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Abstract 40 

Question: 41 

How does plant species richness respond to simulated area loss based on the realistic 42 

geometry of area loss in subalpine moorland ecosystems? 43 

 44 

Location: 45 

Hakkoda mountain range, Aomori, Japan 46 

 47 

Methods: 48 
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We constructed species distribution models based on relationships between species 49 

distributions and environmental conditions in subalpine moorland ecosystems. We then 50 

simulated moorland area loss based on the realistic geometry of area loss from the past 51 

(1967) to the present (2019) to predict future changes in plant diversity. Here, we 52 

defined the realistic geometry of area loss as the plausible spatial pattern of future 53 

habitat loss. Finally, we analyzed how the rate of species loss in response to the realistic 54 

area loss can be explained by a range of factors including spatial patterns in species 55 

distributions, total number of species present, and environmental variables for the focal 56 

moorland. 57 

 58 

Results: 59 

Within each moorland site, areas prone or those less prone to be lost were distributed 60 

nonrandomly at a local scale. In general, the patterns of species loss caused by the 61 

realistic area loss differed from those caused by random area loss. At most sites, the 62 

realistic area loss caused a relatively small decline in species richness, until a certain 63 

threshold of area loss and accelerating decline thereafter. None of the factors can 64 

explain the rate of decrease in species richness caused by the realistic area loss. At the 65 

species level, however, species with lower occurrence rates at a given site can be lost 66 

earlier than those with higher occurrence rates by the realistic area loss. 67 

 68 

Conclusions: 69 

Patterns of habitat loss and species distributions are not spatially random, and the 70 

classical species-area based approach assuming random area loss can thus either under- 71 

or overestimate the risk of species loss. 72 
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Introduction 76 

Habitat loss and fragmentation have profound impacts on global biodiversity (Fahrig, 77 

2003; Foley et al., 2005; Ibáñez et al., 2014) via species extinction and decreased local 78 

species richness (Jamin et al., 2020; Noh et al., 2019; Olsen et al., 2018). Predicting 79 

how species will be lost due to area loss is one of the most important issues in 80 

biodiversity conservation, but much is still uncertain about the best approach to use (He 81 

& Hubbell 2011). A classical approach to predict species loss is based on the 82 

relationship between species richness and area, which has long been an important tool 83 

for conservation planning (Koh & Ghazoul 2010; Pereira et al. 2010). The species 84 

richness–area relationship assumes that species will be lost according to random area 85 

loss and that inhabitant species in the focal area do not exhibit any spatial pattern. 86 

However, because patterns of habitat loss and species distributions are not spatially 87 

random, the classical approach can either under- or overestimate the risk of species loss 88 

(Deane et al., 2017; De Camargo et al., 2015; He and Hubbell, 2011; Keil et al., 2015). 89 

Therefore, to more accurately predict species loss in response to habitat area loss, we 90 

need to account for actual species distributions and how areas are lost in a given habitat 91 

(Keil et al. 2015). 92 

 In assessing species distributions across a large area, species distribution modeling 93 

(SDMs; Elith et al., 2011; Merow et al., 2013; Williams et al., 2021) can serve as an 94 

efficient alternative to field-based investigations. SDMs can estimate the probability of 95 

species’ occurrence using the relationships between species presence (and absence) and 96 

environmental variables at locations where species are present (and absent). SDMs are 97 

widely used in conservation biology; for example, species loss or invasion can be 98 

predicted by substituting climate change scenarios and projected future environmental 99 
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changes into the SDMs (Shimazaki et al. 2012; Zhang et al. 2017; Williams et al. 2021). 100 

SDMs are often based on data of species occurrence and environmental conditions at a 101 

coarse resolution (i.e., >1 km2; Williams et al., 2021; Zhang et al., 2017), but can be 102 

applied to predict species presence and/or absence at a fine resolution as long as such 103 

data are available at a fine scale (Shimazaki et al. 2012). 104 

 In real ecosystems, habitat loss and fragmentation always occur nonrandomly 105 

regardless of whether they are anthropogenically or naturally induced (Deane et al., 106 

2017; He and Hubbell, 2011; Keil et al., 2015). In a study of three taxa in nine regions 107 

across four continents, Keil et al. (2015) demonstrated that inward loss of habitats leads 108 

to more pronounced declines of species richness than when habitats are lost from the 109 

inside toward the edges or are lost randomly. Their models indicate that this can happen 110 

for at least two reasons. First, species’ ranges may be nonrandomly concentrated close 111 

to the edges for ecological reasons, for example, because of the presence of suitable 112 

habitats in those areas. Second, the higher relative impact of inward area loss is 113 

expected in randomly distributed contiguous ranges, when the ranges are truncated or 114 

cropped by region boundaries. However, these estimates of diversity loss were still 115 

based on defined and contiguous forms (inward vs. outward area loss) and not on 116 

realistic geometry of habitat area loss (Keil et al. 2015). Here, we defined the realistic 117 

geometry of habitat area loss as the plausible spatial pattern of future habitat loss. In 118 

subalpine moorland ecosystems in Japan, Makishima et al. (2021) used past (in 1967) 119 

and present (in 2019) aerial photographs to identify spatial features of moorlands and 120 

their long-term changes. By overlaying present photographs on past ones, the authors 121 

revealed a spatial bias in the way the areas decreased within the focal moorland. We 122 

assumed that the locations with more decreasing areas from the past to the present are 123 
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those where area loss will be relatively more likely to occur in future. Through spatial 124 

interpolation of fine-scale area loss patterns, we quantified the realistic geometry of 125 

moorland area loss. 126 

 Here, to predict species loss due to realistic habitat area loss, we combined the 127 

construction of SDMs to predict fine-scale extensive distributions of present species 128 

with simulations of area loss based on the realistic geometry of area loss in subalpine 129 

moorland ecosystems in Japan. The moorland ecosystem is one of the most vulnerable 130 

to environmental changes and habitat loss and fragmentation (Chapin et al., 2000; 131 

Daimaru and Yasuda, 2009; Kudo et al., 2017; Sasaki et al., 2014). Indeed, many 132 

mountainous moorlands in Japan are losing area rapidly (Geospatial Information 133 

Authority of Japan, 2000), despite being subjected to few direct human disturbances, 134 

and moorland specialist species are at risk of local extinction (Jamin et al. 2020). 135 

Although previous studies suggested that habitat specialists are sensitive to habitat loss 136 

and fragmentation and associated environmental changes (e.g., Henle et al., 2004), there 137 

might be considerable differences in species loss patterns depending on how specialist 138 

as well as generalist species are distributed and how area is lost (Jamin et al., 2020; 139 

Olsen et al., 2018). Therefore, in this study we aimed to quantify the responses of 140 

species richness of all species, moorland specialists, and generalists to simulated area 141 

loss. To do this, we first constructed SDMs based on the relationships between present 142 

species distributions and a range of environmental variables. Second, we performed 143 

moorland area loss simulations based on the realistic geometry of area loss from the past 144 

(1967) to the present (2019) to predict how species will be lost in the future. Finally, we 145 

analyzed how the rate of species loss according to simulated area loss based on the 146 

realistic geometry of area loss can be explained by a range of factors including spatial 147 
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patterns in species distributions, total number of species present, and environmental 148 

variables for the focal moorland. 149 

 150 

Methods 151 

Study area and sites 152 

The study area is located in the Hakkoda mountain range (peak coordinates: 40°41′N, 153 

140°52′E, 1584 m a.s.l.) in Aomori Prefecture, northern Japan (Fig. S1). The annual 154 

maximum snow depth, mean temperature, and precipitation between 2009 and 2018 155 

ranged from 3 to 6 m, 5 to 6 °C, and 1600 to 2200 mm, respectively, at the Sukayu 156 

meteorological station (40°38.9′N, 140°50.9′E). 157 

 We selected nineteen moorland sites based on their physical accessibility and 158 

gradients of physical characteristics of moorlands, including their area size and spatial 159 

configuration, as well as environmental factors including elevation, temperature, pH, 160 

and electric conductivity (EC)(Makishima et al. 2021). In this study, taxonomic 161 

nomenclature follows the YList (BG Plants index: http://ylist.info/index.html). 162 

 The study area is a conservation reserve (Towada-Hachimantai National Park), and 163 

therefore human impacts on natural vegetation have been minimal. Nonetheless, within 164 

the study area, habitat loss and fragmentation of the moorlands are progressing rapidly, 165 

and the areas of the 19 studied moorlands have decreased by an average of 50.01% over 166 

the past ~50 years (Makishima et al. 2021). Even if direct human impacts are minimal, 167 

earlier snowmelt in spring associated with recent climate change may facilitate 168 

expansion of shrubby species, leading to habitat loss and fragmentation of mountainous 169 

moorlands in Japan (Kudo et al. 2017). The causes remain unexplored, however, and 170 

need to be studied by using long-term observation data. Other general descriptions of 171 
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the study area and sites have been provided by Sasaki et al. (2013) and Makishima et al. 172 

(2021). 173 

 174 

Vegetation sampling 175 

We sampled vegetation along six 20-m transects, separated evenly by at least 20 m 176 

(range 20–200 m) within each moorland site, and laid out five quadrats of 1 × 1 m on 177 

each transect at intervals of 5 m, for a total of 570 quadrats along 114 transects sampled 178 

at 19 sites (Makishima et al. 2021). In August 2018, the coverage of each species in 179 

each quadrat was visually estimated by the first, second, and third authors (to ensure 180 

consistency) using a modified Daubenmire percent cover scale (Daubenmire, 1959): 1, 181 

≤1%; 2, 2–5%; 3, 6–25%; 4, 26–50%; 5, 51–75%; 6, 76–95%; 7, >95%. In this study, 182 

however, we used presence/absence information of present species across quadrats. To 183 

construct the SDM (see section 2.5), only the cover of Sphagnum spp. was determined 184 

by converting Daubenmire scores to the midpoint of the percentage range spanned by 185 

each score (e.g., a score of 5 was converted to 63% cover). Seventy-two vascular plant 186 

species were recorded across the entire landscape. Consequently, we compiled a 187 

species-by-quadrat matrix for the following analyses. Moorland specialist species were 188 

defined based on descriptions of Japanese flora (Satake et al., 1982, 1989). 189 

 190 

Environmental data 191 

We measured soil moisture (%), pH, and EC (as a surrogate for salinity; μS cm–1) of the 192 

soil solution close to each quadrat (n = 570) using digital soil moisture (DIK-311F; 193 

Daiki Rika Kogyo Co., Ltd., Saitama, Japan), pH, and EC meters (pH-22B and B-173; 194 

HORIBA Ltd., Kyoto, Japan), respectively, in August 2018. We measured soil moisture 195 
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at least 3 days after the last precipitation event at each site. Gradients in soil moisture, 196 

pH, and EC are known to be primary factors contributing to vegetation patterns in 197 

subalpine moorland ecosystems (Gorham et al., 1984; Wheeler and Proctor, 2000). We 198 

averaged the soil moisture, pH, and EC across quadrats within each site. 199 

 To construct the SDM based on the relationships between species composition and 200 

environmental variables at the quadrat level (see section 2.5), we divided the present 201 

site area into 20 × 20 m or 40 × 40 m grids (depending on the site area; Table 1) using 202 

ArcGIS (version 10.6, ESRI, Redlands, CA, USA) and measured the environmental 203 

variables within each grid. We varied the size of grids among sites to optimize our 204 

sampling efforts (i.e., if we use of 20 × 20 m grids for larger sites, we need enormous 205 

sampling efforts). Based on the present (2019) aerial photograph (see section 2.4), the 206 

grids were created to cover the area of each moorland site and then clipped by the 207 

polygon of each site (Fig. S2). The grids inside the site perimeter in 2019 that were 208 

covered mostly or completely by trees were also measured. However, the grids 209 

completely outside the site perimeter in 2019 were not measured even when the grids 210 

were inside the site perimeter in 1967. We measured soil moisture, pH, EC, and the 211 

cover of Sphagnum spp. (hereafter, Sphagnum cover) at three random points to account 212 

for environmental heterogeneity in each grid. Sphagnum cover was recorded using a 213 

modified Daubenmire percent cover scale (Daubenmire, 1959), and Daubenmire scores 214 

were then converted to the midpoint of the percentage range spanned by each score. The 215 

same equipment was used for pH, EC, and soil moisture content measurements as noted 216 

above. Environmental measurements for each grid at each site were performed in 217 

August 2019. 218 

 219 
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Spatial parameters 220 

The perimeters of all moorlands within the study area were first delineated through 221 

visual interpretation of the past (1967) and present (2019) aerial photographs and then 222 

digitally mapped using ArcGIS. For details on the digitization of photographs, see 223 

Sasaki et al. (2012). In both periods, we estimated the area of each grid excluding area 224 

covered by trees. 225 

 We then calculated the natural logarithm of the difference between past and present 226 

area for each grid (log difference; LD): 227 

𝐿𝐷 = ln𝐴ᇱ − ln𝐴 = ln ቀ
஺ᇲ

஺
ቁ, (1) 228 

where A and A′ represent the area of the focal grid in 1967 and in 2019, respectively. 229 

 From the present aerial photographs, we derived a set of spatial parameters for each 230 

grid, including elevation and distance to the moorland perimeter. Within-site scale 231 

variations in elevation (i.e., microtopography) can contribute to plant species 232 

distribution in moorland ecosystems (Hájková et al. 2006; Sasaki et al. 2013). In 233 

addition, previous studies reported that moorland edges often have less soil moisture 234 

than the interior, leading to the formation of community composition specific to 235 

moorland edges (Merlin et al. 2015; Boughton et al. 2021). We therefore calculated the 236 

nearest distance from the moorland edge to the center of each quadrat along vegetation 237 

survey transects and each grid. However, when the center of a grid (the center of each 238 

quadrat was never outside of the perimeter) was outside of the moorland perimeter, the 239 

nearest distance from the edge was set to zero. 240 

 241 

Species distribution models 242 

To predict the species presence and absence at each grid at each moorland site based on 243 



12 

environmental conditions at each grid, SDMs were constructed using three types of 244 

statistical models: a generalized linear mixed-effects model (GLMM), a generalized 245 

additive mixed-effects model (GAMM), and random forests. We did not use alternative 246 

methods based on presence-background modeling such as Maxent (Phillips et al. 2006) 247 

because Maxent was not originally programmed to incorporate species presence-248 

absence information, and using Maxent seems circuitous even though such information 249 

is available (Guillera-Arroita et al. 2014). 250 

 First, to clarify the relationships between species distribution and environmental 251 

conditions, we used the field-based data at the survey quadrat level. In selecting 252 

explanatory variables, since the measured soil moisture and Sphagnum cover showed a 253 

weak positive correlation (p < 0.001, r = 0.22), soil moisture was omitted, and 254 

Sphagnum cover was selected as an explanatory variable because it is considered to 255 

have relatively small temporal variation compared to that of soil moisture. Accordingly, 256 

the response variable for the three statistical models was the presence/absence (0/1) of 257 

each plant species present across the quadrats (N = 570; i.e., three SDMs were 258 

constructed for each present species across the studied area), and the explanatory 259 

variables were elevation, pH, EC, Sphagnum cover, and distance from the moorland 260 

edge. In the GLMM and GAMM, we used a binomial error structure and a logit link 261 

function. We also incorporated the ID of each moorland site as a random effect in the 262 

GLMM and GAMM. 263 

 Next, for each species, we selected the best-fit model and verified its accuracy. For 264 

model selection, among the three SDMs (GLMM, GAMM, and random forest), we 265 

evaluated which model provided the best fit by using the area under the curve (AUC), 266 

which takes values from 0 to 1. An AUC of 0.5 means that the model prediction is 267 
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random, 0.6 < AUC < 0.7 means that the accuracy of the model is low, 0.7 ≤ AUC < 0.8 268 

means that the accuracy is moderate, and 0.8 ≤ AUC ≤ 1.0 means that the accuracy is 269 

high (Manel et al., 2001; Pearce and Ferrier, 2000). For each species, the model with the 270 

highest AUC value among the three SDMs was adopted as the SDM for that species 271 

(note that selected SDMs were GLMM for all species; Table 2). Species with AUC < 0.6 272 

in any of the three models were excluded from subsequent analyses. In addition to the 273 

AUC, the accuracy of the models was confirmed by comparing predicted data with the 274 

measured data (i.e., cross-validation). We randomly divided the data (N = 570) of all 275 

quadrats in half (N = 285) and used half of the data (training data) to build prediction 276 

models for each species. The models used in the cross-validation were those selected by 277 

AUC. Then, the models were used to predict the presence/absence of each species based 278 

on environmental conditions in the other half of the data that was not used in the 279 

prediction models. The threshold for determining presence/absence was set at 0.5; 280 

species were assigned presence if the model predicted a value greater than 0.5 and 281 

absence if the model predicted a value less than 0.5. The predicted presence/absence 282 

information of the species was compared with the actual occurrence of the species, and 283 

the accuracy rate was calculated. This process was repeated 1000 times, and the 284 

accuracy rate was averaged to confirm the cross-validation of SDMs for each species. 285 

SDMs with AUC > 0.6 but with a mean accuracy rate < 60% were excluded from 286 

further analysis. We also excluded from the analysis species for which the number of 287 

occurrences across the quadrats was too small for us to calculate a robust accuracy rate. 288 

 Following these procedures, we predicted the presence/absence of each species at 289 

each grid at each moorland site based on the environmental conditions of each grid 290 

using the SDMs. Our SDMs can be applied for 30 species (see Results for details). 291 
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 292 

Quantifying the likelihood of grid-based area loss 293 

We used universal kriging to perform areal smoothing of the likelihood of area loss at 294 

the grid level. We defined the likelihood of area loss based on LD, that is, the grids with 295 

smaller LD (more decreasing areas from the past to the present) are the locations at the 296 

focal moorland where area loss will be relatively more likely to occur. In this study, the 297 

LD of each grid was spatially interpolated by kriging to estimate the areal LD within the 298 

moorland site. The areal LD estimates were then averaged for each grid and ordered 299 

based on the average LD values, which were used for the simulation rules (grids with 300 

lower LD estimates were more likely to be lost earlier). 301 

 302 

Grid-based area loss simulations 303 

Based on the likelihood of area loss for each grid, we simulated the sequential loss of 304 

grids to examine how species are lost. This grid-based area loss simulation was run until 305 

all grids at the moorland site were lost. Such consequences of simulated area loss based 306 

on the realistic area loss were compared with those of randomly simulated area loss. In 307 

that case, a grid was randomly lost at each site, and we repeated 1000 sets of random 308 

area loss simulations until all grids were lost. The trajectory of change in species 309 

richness of all species, moorland specialists, and generalists according to the simulated 310 

area loss was visualized for each site. In the area loss simulation based on the realistic 311 

geometry of area loss, we summarized the proportion of area lost leading to local 312 

extinction of each species across the sites. 313 

 314 

Exploring the factors determining the rate of species loss according to simulated area 315 
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loss based on the realistic geometry of area loss 316 

We explored how the rate of species loss according to the realistic area loss can be 317 

explained by a range of factors including spatial patterns in species distributions, initial 318 

species richness (total number of species present before simulated area loss), and 319 

environmental variables for the focal moorland. We first defined the half-life of species 320 

richness, as a rate of decreasing species richness due to the realistic area loss, calculated 321 

as the area that must be lost to halve the initial species richness divided by the original 322 

area at each site. The half-life of species richness close to 0 means a shorter half-life, 323 

whereas that close to 1 means a longer half-life. 324 

 For quantifying spatial patterns in species distributions, we used Clark and Evans’ 325 

aggregation index (Clark and Evans 1954). This aggregation index uses the observed 326 

mean nearest-neighbor distances and the expected nearest-neighbor distances under 327 

complete spatial randomness in species distribution. Ratios of observed to expected 328 

mean nearest-neighbor distances below 1 indicate clustering, values greater than 1 329 

uniformity. If a species is predicted by SDM to be present in a given grid at each site, 330 

the location of species is fixed for the centroid of that grid. For each species, we 331 

computed the distances from all centroids where species are present to their nearest 332 

neighbors, and averaged the values of aggregation index across species. 333 

 In addition to area and elevation, we quantified the indices of isolation and 334 

moorland shape as environmental variables describing the focal moorland. We 335 

quantified the isolation index as suggested by previous studies (see Hanski et al. 1994; 336 

Sasaki et al. 2012, for details). Larger values of this index indicate less isolation than 337 

smaller values. The shape index was calculated as perimeter divided by area of the focal 338 

moorland. 339 
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 We used a generalized linear model with a binomial error structure and logit link to 340 

analyze the relationship between the half-life of species richness, and initial species 341 

richness, averaged aggregation index across species, area, isolation, and elevation at 342 

each site. We excluded the shape index from this model to avoid a multicollinearity 343 

problem. In addition, we regressed the proportion of area lost leading to local extinction 344 

of each species against aggregation index and occurrence rate (number of predicted 345 

occurrences divided by number of grids at each site) of each species at each site, by 346 

using a generalized linear mixed-effects model with a binomial error structure and logit 347 

link. Phylogenetic constraints were controlled by adding family as a random effect in 348 

the model. Because we varied the size of grids among sites (20 × 20 m or 40 × 40 m 349 

grids), we repeated these analyses by using the subset data from the sites with a 40 × 40 350 

m grid resolution as well as that from the sites with 20 × 20 m grid resolution (see Table 351 

1). 352 

 All data analyses were performed with R software (version 4.0.3; R Development 353 

Core Team, 2020) using the “gamm4,” “lme4,” “randomForest,” “car,” “vegan,” 354 

“pROC,” and “ROCR”, “spatstat.core” packages. 355 

 356 

Results 357 

Our SDMs (i.e., models with AUC > 0.6 and accuracy > 60%) predicted the 358 

distributions of 30 species of a total of 72 species identified across the survey quadrats. 359 

Of a total of 72 species, 38 were moorland specialists and 34 were generalists (Table 360 

S1). Of 30 species predicted by the SDMs, 22 were moorland specialists and 8 were 361 

generalists (Table 2). The mean AUC score of the 30 SDMs was 0.915, and the mean 362 

accuracy was 86.3% (Table 2). AUC score and accuracy were significantly positively 363 



17 

correlated (Figure S3). Among the 30 species, those with the highest predicted rate of 364 

occurrence across grids were Moliniopsis japonica, Vaccinium oxycoccos, and Drosera 365 

rotundifolia (in this order). In general, species with higher occurrence rates across the 366 

quadrats were predicted to occur in most grids (Fig. S4). For some species, however, 367 

such as Trientalis europaea and Helonias orientalis, the rate of predicted occurrences 368 

across grids was lower than the actual rate of occurrences across the quadrats. The 369 

degree of spatial aggregation/disaggregation in the predicted distribution differed among 370 

each species (Fig. 1). Similarly, we noted that the predicted species richness is spatially 371 

heterogeneous within each site (Fig. 2b, c, e, f, h, i), and there is also a spatial 372 

heterogeneity in the likelihood of grid-based area loss within a site (Fig. 2a, d, g). 373 

 In general, the patterns of species loss caused by simulated area loss based on the 374 

realistic area loss deviated from those caused by randomly simulated area loss (Fig. 3; 375 

the 95% CIs for species loss trajectories by random area loss did not generally overlap 376 

with species loss trajectories by realistic area loss). At most sites, realistic area loss 377 

caused a relatively small decline in species richness, until a certain threshold of area 378 

loss and accelerating decline thereafter. At fewer sites (Shimokenashi C, Tamoyachi A, 379 

and Takada B sites), realistic area loss caused an approximately proportional decrease in 380 

species richness. The effects of simulated area loss on all 30 species (including 381 

moorland specialist species) were generally similar when we focused on only moorland 382 

specialist species (Fig. 4) or generalist species (Fig. 5). We further visualized the 383 

proportion of area lost leading to local extinction of each species across moorland sites 384 

(Fig. 6), and the proportion varied among species as well as moorland sites. 385 

 None of the factors can explain the half-life of species richness (Table 3). This was 386 

probably due to the robust responses of species richness to realistic area loss (i.e., the 387 
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half-life of species richness was biased to a high value; Fig. S5). At the species level, 388 

however, species with lower occurrence rates at a given site can be lost earlier than 389 

those with higher occurrence rates by realistic area loss (Table 4). These results were 390 

consistent when we used the subset data from the sites with a 40 × 40 m grid resolution 391 

as well as that from the sites with 20 × 20 m grid resolution (Tables S2 and S3). 392 

 393 

Discussion 394 

Based on the simulation of possible area loss at each site, we found that the patterns of 395 

species loss caused by the realistic area loss generally deviated from those caused by 396 

random area loss (Fig. 3). At most sites, realistic area loss caused a relatively small 397 

decline in species richness, until a certain threshold of area loss and accelerating decline 398 

thereafter. At fewer sites (Shimokenashi C, Tamoyachi A, and Takada B sites), realistic 399 

area loss caused an approximately proportional decrease in species richness. These 400 

findings on the effects of simulated area loss on all 30 species (including moorland 401 

specialist species) were similar when we focused only on moorland specialist species 402 

(Fig. 4) or generalist species (Fig. 5). The half-life of species richness, a rate of 403 

decreasing species richness due to realistic area loss, could not be explained by initial 404 

species richness, averaged aggregation index across species, area, isolation, and 405 

elevation at each site (Table 3). This result was probably due to that the half-life of 406 

species richness did not vary substantially among sites and was rather biased to a high 407 

value (Fig. S5). 408 

 Previous studies have suggested that habitat specialist species (in our case, moorland 409 

specialist) are sensitive to habitat loss and fragmentation and associated environmental 410 

changes (Henle et al., 2004; Jamin et al., 2020; Olsen et al., 2018). Depending on how 411 
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specialist species are distributed and how area will be lost, however, there might be 412 

considerable differences in patterns of species loss (Jamin et al., 2020; Olsen et al., 413 

2018). Our species-level analysis (Table 4) revealed that species with lower occurrence 414 

rates at a given site can be lost earlier than those with higher occurrence rates by 415 

realistic area loss. Relatively rare species such as Coptis trifolia, Menyanthes trifoliata, 416 

Carex michauxiana, Rhododendron molle subsp. japonicum, and Platanthera tipuloides 417 

will be lost earlier, whereas relatively abundant species such as Moliniopsis japonica, 418 

Eriophorum vaginatum, and Narthecium asiaticum will be lost later in the face of 419 

possible area loss (Fig. 6). The proportion of area lost leading to local extinction thus 420 

varied substantially among species and moorland sites, suggesting that area loss and 421 

species loss do not occur uniformly (Keil et al. 2015) and that the patterns of species 422 

loss would depend on the actual species distribution and how the area is lost in a focal 423 

moorland. Furthermore, the realistic geometry of area loss indicated that possible area 424 

loss would not necessarily occur from the edge of a focal moorland (Fig. 2), and non-425 

moorland specialist species (which are likely to be distributed along moorland edges) 426 

will not necessarily be lost earlier than moorland specialists due to realistic area loss 427 

(Fig. 6). Therefore, it appears that our results are not an artifact of such edge effects. 428 

 Our grid-based area loss simulations assumed no environmental changes, 429 

microhabitat shifts of present species, or colonization of new species (especially shrub 430 

encroachment) associated with area loss. Thus, our simulations might overestimate 431 

species loss due to possible area loss of moorlands. The impacts of moorland area loss 432 

on subsequent environmental changes within a moorland and potential microhabitat 433 

shifts and colonization, if any, need to be carefully monitored in the future. Nonetheless, 434 

the sites with greater rates of species loss based on simulated possible area loss rather 435 
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than on random area loss are of conservation concern. In those cases where rapid 436 

species loss with possible area loss would lead to a rapid decline in functioning and 437 

persistence of a given community (Sasaki et al. 2014), such communities would be of 438 

highest concern. At moorland sites located at higher elevations, including Kamikenashi 439 

A, Kamikenashi B, Shimokenashi B, Shimokenashi C, Tamoyachi A, and Suiren A, 440 

rapid species loss due to possible area loss would be paralleled with a rapid decline in 441 

functional diversity (Sasaki et al. 2014) as a surrogate for functioning and persistence of 442 

communities. 443 

Our SDMs had relatively high AUC scores and accuracy rates, suggesting that they 444 

were able to accurately predict the spatial distributions of the 30 species (Table 2; Fig. 445 

S3). Ideally, if we had more fine-scale grids and measured more environmental 446 

variables regulating species presence/absence (particularly hydrological states such as 447 

groundwater level), we might be able to predict more species and increase the model 448 

accuracy (Elith et al. 2011). Because we needed to extensively survey multiple 449 

moorland sites, we selected environmental variables that could be easily and rapidly 450 

measured at a reasonably fine scale (20 × 20 m or 40 × 40 m grids). As a result, we may 451 

have missed some important responses of species to moorland area loss (Fig. 6), but we 452 

believe that our SDMs and area loss simulations track well the relative rates of species 453 

diversity change according to possible area loss in the future. 454 

 In this study, we predicted diversity changes in subalpine moorland ecosystems 455 

based on spatial patterns in species distributions and moorland area loss. The 456 

assumptions of the classical approach based on the species richness–area relationship 457 

that species are lost proportionally to area loss and that inhabitant species in the focal 458 

area do not exhibit any spatial pattern may not hold in most cases (Deane et al., 2017; 459 
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De Camargo et al., 2015; He and Hubbell, 2011). As demonstrated in our study, patterns 460 

of habitat loss and species distributions are not spatially random, meaning that the 461 

classical approach can either under- or overestimate the risk of species loss. When 462 

predicting the risk of local extinction due to habitat loss and fragmentation in 463 

ecosystems in general, we recommend incorporating both actual species distributions 464 

and possible spatial patterns of area loss (He & Hubbell 2011; Keil et al. 2015). 465 
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Table 1. Elevation, grid size, number of grids, and environmental variables (data in each grid was averaged) at 19 moorland sites in the 

Hakkoda mountain range, Aomori Prefecture, northern Japan. 

Site code 
Elevation 

(m a.s.l.) 

Grid size 

(m × m) 
Number of grids 

Environmental variables (mean) 

pH EC (μS cm−1) Soil moisture (%) Sphagnum spp. cover (%) 

Kamikenashi A 1217 40 40 3.74 62.29 97.00 20.67 

Kamikenashi B 1164 40 72 3.71 82.48 86.34 10.19 

Rope 908 20 32 3.92 110.17 71.76 73.49 

Shimokenashi A 1047 40 45 4.41 71.04 73.25 24.08 

Shimokenashi B 1034 40 32 4.14 61.7 84.15 36.26 

Shimokenashi C 1022 40 27 4.00 65.29 71.94 11.4 

Suiren A 988 20 11 4.49 151.58 64.29 23.91 

Suiren B 986 20 9 4.63 276.3 73.53 4.41 

Suiren C 964 20 8 4.19 133.96 78.52 47.00 

Sukayu 893 20 13 3.86 155.33 93.17 93.21 

Takada B 987 40 39 4.93 78.05 66.92 20.99 
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Takada C 1016 20 9 4.99 65.83 90.96 35.88 

Takada D 1025 40 34 3.91 174.34 52.85 11.64 

Takada G 1057 20 9 5.01 251.27 90.87 21.33 

Takada I 1046 40 15 4.07 392.4 66.34 5.57 

Tamoyachi A 1254 20 35 3.84 79.44 91.62 43.98 

Tamoyachi B 1285 20 30 3.75 74.72 82.78 14.24 

Tashiro 574 40 125 5.73 377.33 63.84 12.19 

Yachi 774 40 39 4.77 137.68 99.81 49.49 
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Table 2. Selected species distribution model (SDM), number of predicted occurrences, 

accuracy rate, and AUC score for 30 species. Asterisks denote the 22 moorland specialists. 

Species Selected SDM 
Number of predicted 

occurrences by SDM 

Accuracy rate 

(%) 
AUC 

Gaultheria adenothrix GLMM 17 87.9 0.923 

Nephrophyllidium crista-galli* GLMM 89 83.3 0.921 

Schizocodon soldanelloides GLMM 107 85.1 0.938 

Parnassia palustris* GLMM 187 73.3 0.860 

Menziesia multiflora* GLMM 5 92.8 0.923 

Carex omiana GLMM 164 82.5 0.913 

Narthecium asiaticum* GLMM 184 79.9 0.914 

Platanthera tipuloides* GLMM 13 81.0 0.792 

Lobelia sessilifolia* GLMM 1 93.6 0.968 

Carex blepharicarpa GLMM 25 79.9 0.890 

Helonias orientalis* GLMM 1 79.1 0.784 

Hosta sieboldii* GLMM 136 92.4 0.974 

Sieversia pentapetala* GLMM 237 94.9 0.989 

Trientalis europaea GLMM 7 85.1 0.922 

Vaccinium oxycoccos* GLMM 549 75.4 0.874 

Ligularia hodgsonii GLMM 20 88.7 0.962 

Sanguisorba tenuifolia* GLMM 234 96.5 0.990 

Moliniopsis japonica* GLMM 622 93.3 0.946 

Ilex crenata var. paludosa GLMM 70 93.1 0.925 

Primula nipponica* GLMM 35 94.4 0.957 
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Inula ciliaris* GLMM 1 93.1 0.970 

Carex michauxiana* GLMM 2 94.9 0.918 

Menyanthes trifoliata* GLMM 3 95.4 0.938 

Coptis trifolia* GLMM 3 85.4 0.887 

Rhynchospora yasudana* GLMM 288 72.7 0.853 

Drosera rotundifolia* GLMM 504 76.4 0.852 

Myrica gale var. tomentosa* GLMM 26 98.4 0.998 

Phragmites australis* GLMM 88 83.0 0.940 

Rhododendron japonicum GLMM 4 87.7 0.906 

Eriophorum vaginatum* GLMM 278 69.6 0.821 
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Table 3. Summary of the generalized linear model of the relationship between the relationship 

between the half-life of species richness (see Methods), and initial species richness (total 

number of species present before simulated area loss), averaged aggregation index across 

species (representing spatial patterns in species distributions), area, isolation, and elevation at 

each site. 

Variables Coefficient SE Z value p value 

(Intercept) 2.439 1.097 2.222 0.026 

Initial species richness -0.943 1.134 -0.832 0.405 

Aggregation index across species -0.163 1.094 -0.149 0.881 

Area 0.661 2.241 0.295 0.768 

Isolation -0.451 1.000 -0.451 0.652 

Elevation -0.376 1.036 -0.363 0.717 



32 

Table 4. Summary of the generalized linear mixed-effects model of the relationship between 

the proportion of area lost leading to local extinction of each species, and aggregation index 

and occurrence rate (number of predicted occurrences divided by number of grids at each site) 

of each species at each site. Phylogenetic constraints were controlled by adding family as a 

random effect in the model. 

Variables Coefficient SE Z value p value 

(Intercept) 3.821 0.551 6.935 < 0.001 

Aggregation index of each species 0.283 0.231 1.225 0.221 

Occurrence rate of each species 3.610 0.776 4.653 < 0.001 
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Figure captions 

 

Fig. 1. Distributions of eight species that are typically present in moorlands as predicted by 

the species distribution model at the Takada B site. Red grids indicate presence of the species. 

There was a spatial bias in the predicted distribution of each species. 

 

Fig. 2. Spatial distribution of the likelihood of grid loss (a, d, g) and the predicted distribution 

of species richness for all species (b, e, h) and for moorland specialist (c, f, i) at the 

Tamoyachi A, Takada B, and Tashiro sites. The likelihood of grid loss is represented by the 

predicted LD values (see sections 2.4 and 2.6). 

 

Fig. 3. Changes in species survival rate for all 30 species according to grid-based area loss 

simulations. Because area differed among grids, change trajectories of survival rate were 

plotted against the proportion of area lost. Green solid lines indicate change trajectories due to 

simulated grid-based area loss reflecting the actual area loss patterns, and green dashed lines 

indicate randomly simulated grid-based area loss. Green dashed lines are accompanied by 

gray shaded areas, indicating the 95% CIs for species loss trajectories by random area loss; 

however, the CIs are too narrow to visualize. 

 

Fig. 4. Changes in species survival rate for 22 moorland specialists (Table 2) according to 

grid-based area loss simulations. Because area differed among grids, change trajectories of 

survival rate were plotted against the proportion of area lost. Blue solid lines indicate change 

trajectories due to simulated grid-based area loss reflecting the actual area loss patterns, and 

blue dashed lines indicate randomly simulated grid-based area loss. Blue dashed lines are 



34 

accompanied by gray shaded areas, indicating the 95% CIs for species loss trajectories by 

random area loss; however, the CIs are too narrow to visualize. 

 

Fig. 5. Changes in species survival rate for 8 generalists (Table 2) according to grid-based 

area loss simulations. Because area differed among grids, change trajectories of survival rate 

were plotted against the proportion of area lost. Orange solid lines indicate change trajectories 

due to simulated grid-based area loss reflecting the actual area loss patterns, and orange 

dashed lines indicate randomly simulated grid-based area loss. Orange dashed lines are 

accompanied by gray shaded areas, indicating the 95% CIs for species loss trajectories by 

random area loss; however, the CIs are too narrow to visualize. 

 

Fig. 6. Proportion of area lost leading to local extinction of each species across moorland 

sites. Here, area loss simulations were based on the realistic geometry of area loss. Species 

with orange boxplots are generalist species, and those with blue boxplots are moorland 

specialists. 
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Fig. 1. 
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Fig. 2. 

  



37 

 

Fig. 3.
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Fig. 6. 


