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Normal forms for singularities of pedal curves produced
by non-singular dual curve germs in S"
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Abstract For an n-dimensional spherical unit speed curve r and a given point P, we
can define naturally the pedal curve of r relative to the pedal point P. When the dual
curve germs are non-singular, singularity types of such pedal curves depend only on
locations of pedal points. In this paper, we give a complete list of normal forms for
singularities and locations of pedal points when the dual curve germs are non-singular.
As an application of our list, we characterize C* left equivalence classes of pedal curve
germs (I, s9) — S™ produced by non-singular dual curve germ from the viewpoint of
the relation between £ tangent space and C tangent space.
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1 Introduction

Let I be an open interval and S™ be the n-dimensional unit sphere in R**1. A ¢

regular map r : I — S™ is said to be a spherical unit speed curve if each of the following

u;(s) (1 <i<n-—1)isinductively well-defined for any s € I (in other words, each of

the following k;(s) (1 <4 < mn —1) is a positive function), where initial information

are u_1(s) = 0, up(s) = r(s), |[uf(s)|| = 1 and Ko(s) = 0.

o wi(s) +Rim1(s)ui—a(s)
g1 (5) + Kim1(s)ui—a(s)

Ki(s) = |[wi_1(s) + ri—1(s)u;—2(s)]| (1<i<n-1)

u;(s) (1<i<n-1)

Note that the above inductive conditions for a spherical unit speed curve r are not
so strong restrictions. This is because first by using Thom transversality theorem (for

Takashi Nishimura

Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National
University, Yokohama240-8501, Japan

E-mail: takashi@edhs.ynu.ac.jp



instance, see [6]) (n — 2) times for any C'°° regular map r : I — S™ we can obtain a
sufficiently near C° map 7 in C°°(I,8™) with Whitney C*° topology such that

n—1x
r(s), j—i(s), s %(s) are linearly independent for any s € 1.

Then the so-called arc-length parameter gives a C°° diffeomorphism h : I — I such
that Toh lis a spherical unit speed curve.

For a spherical unit speed curve we see that any two of u;,u; (0 < 4,5 <
n — 1,1 # j) are perpendicular (see §2). Therefore, we can define one more vector
uy(s) uniquely so that {ug(s),ui(s), - ,un(s)} is an orthogonal moving frame and
det(ug(s), - ,un(s)) =1 for any s € I. The map un : I — S is called the dual curve
of r ([1]). By using the dual curve u, we define kn, as follows, where the dot in the
center means the scalar product:

kin(s) = Wp—1(s) - un(s).

We see that the dual curve uy, is non-singular at s if and only if Kk, (s) # 0 (see §2).
For any i (-1 <1i<n), we put

Sty = (8" — {Fua(s)H N Y Ruy(s).
j=—1

Given a spherical unit speed curve r : I — S™, choosing a point P of S™ —{£u,(s)|s €
I} gives the map which maps s € I to the unique nearest point in Sﬁf_ll(s) from P.

Such a map is called the pedal curve relative to the pedal point P for an n-dimensional
unit speed curve r and is denoted by ped, p. Note that since all points in Sﬁ’_jl(s) are

the nearest points from fux(s) the pedal point P for the map-germ ped, p at s must
be outside {tun(s)}.

The purpose of this paper is to show the following.

Theorem 1.1 Let r be an n-dimensional spherical unit speed curve. Let sq € I be
such that kn(so) # 0. Then the following hold.

1. The pedal point P is inside SLL?L(SO) —Sﬁ’_i( ) if and only if the map-germ ped, p :

50
(I,s0) — S™ is C°° left equivalent to the map-germ given by s+ (s,0,---,0).
2. For any i (0 < i < n—2), the pedal point P is inside S:u(SO) - S;f}l(SO) if and

only if the map-germ pedy p : (I,50) — S™ is C°° left equivalent to the map-germ
given by the following:

n—i n—i+1l 2n—21—1
8'_)(8 S )T S ) 05“'30 )
~ ~~ S~——
(n—i) elements i elements

Here, two map-germs f,g : (R,0) — (R",0) are said to be C™ left equivalent if there
exist a germ of C°° diffeomorphism ht : (R",0) — (R",0) such that the identity
g = ht o f is satisfied.

As a corollary of theorem 1.1, we can characterize C™° left equivalence classes of
pedal curve germs (I,sg) — S™ with kn(sg) # 0 from the viewpoint of the relation
between L tangent space and C tangent space. For the definitions of £ tangent space
and C tangent space, see [7] or [9]. Let O(1,n) be the set of C°° map-germs f : (R, 0) —



(R™,0) such that TL(f) = TC(f) (O means “open”) with finite codimensions ; and let
P(1,n) be the set of C*° map-germs (R,0) — (R",0) which are C° left equivalent
to some pedal curve germ (I, s9) — S™ with kn(sp) # 0 (P means “pedal”). Since any
normal form in theorem 1.1 belongs to O(1,n), any map-germ in P(1,n) is C° left
equivalent to one of normal forms in theorem 1.1 and any map-germ in O(1,n) is C*°
left equivalent to one of normal forms in theorem 1.1 1 we have the following.

Corollary 1.1 O(1,n) = P(1,n).

Note that it is impossible to obtain the same result as in corollary 1.1 if we replace
TL(f) = TC(f) with TA(f) = TK(f) in the definition of O(1,n) since the equality
TA(f) = TK(f) holds even for f(s) = (s3,s*). Thus, in our situation the C right-left
equivalence does not work well, but the C* left equivalence does so. This is a merit
since the C'° left equivalence is easy to deal with as pointed out in [4]. Furthermore, in
our situation we can truncate higher terms quite easily by using Malgrange preparation
theorem only one time, we need no calculations by using semigroups as in [2] (see §5).
On the other hand, note also that it is impossible in general to characterize P(1,n)
as the set of tops of hierarchies of A-simple singularities since normal forms in 2 of
theorem 1.1 are A-simple if and only if n < 6 due to [2]. Thus, it seems that the notion
of simple singularity is not suitable for singularities of pedal in general.

In §2 we investigate several properties of the set {ug(s), - ,un(s)}. §3 is devoted
to factor ped, p as the composition of the dual curve, the canonical projection and one
map Lip. In §4 we show that the map @p introduced in §3 is C°° right-left equivalent
to the blow up of R™ at the origin. Proof of theorem 1.1 is given in §5.

2 Several properties of the set {ug(s), -+ ,un(s)}

Lemma 2.1 For any s € I and any i,k (=1 <i < k <n —1) the following three
hold.

u;(s) - ug(s) = 0,
ui(s) - up(s) = 0 (i<k-—1),
wy,1(5) - ug(s) = —rg(s).
Proof of lemma 2.1 We show lemma 2.1 by induction on k.

First, by definitions it is trivial that u_1(s)-up(s) = 0 and u_1(s)-uf(s) = —ko(s).
Next, we assume that for any i,7 (-1 <i < j <k <n—1), the following three
hold.

wi(s) - uy(s) = 0,
ui(s) - wj(s) = 0 (i<j-1),
uj_l(s)Au;(s) = —k;(8).

1 The last assertion on map-germs in O(1,n) is easily obtained by Gaffney’s criterion on
L-equivalence (for Gaffney’s criterion on L-equivalence, see theorem 2.7 of [9]).



Under this assumption, we see that

ug_o(s) - ug(s) = Nkl(s)uk72( ) - (Up—1(8) + Kr—1(s)ug_2(s))
= g (P8 i (9) =0

and for ¢ < k,i # k — 2 we see that

wi(s) - up(s) = ——s(s) - (Wh_y(s) + 1 (8)up_(s))
F(s)
1
B Hk(s)(0+0) =0

Next, under the same assumption we see that for any ¢ (0 <7 <k —1)

u;(s) - up(s) = —ug(s) - ug(s)
—(kit1(s)uir1(s) — ki(s)ui—1(s)) - ug(s)
=—(0+0)=0

and in the case that i = k — 1 we see

w1 (s) - ug(s) = —uj_(s) - up(s)
—(kk(s)up(s) — rp—1(s)up—2(s)) - up(s)
—(r&(s) +0) = —rp(s).

Of course, u_1(s) - uj,(s) = 0 holds under no assumption.
Therefore, lemma 2.1 is proved by induction. ]

Lemma 2.1 shows that {ug(s), -+ ,un(s)} is an orthogonal moving frame.

Lemma 2.2 For any s € I the following two hold.

1(8) = —rn-1(s)un—2(s) + £n(s)un(s),

2 un(s) —kn(s)up—1(s).

Proof of lemma 2.2 First we show 2 of lemma 2.2. By definition, for any i (z <
n—1)
wi(s) - un(s) = (ki1 (s)uig1(s) = mi(s)ui—1(s)) - un(s) = 0.

Thus, we have that u;(s) - uj,(s) = 0. Combining this result with ul,(s) - un(s) = 0
implies that we may put uj,(s) = a(s)u,_1(s). Then,

a(s) = un-1(s) - up(s) = —up_1(s) - un(s) = —kn(s).
Next, we show 1 of lemma 2.2. By similar arguments as in the proof of 2 of lemma

2.2 we may put uj,_;(s) = B(s)up_2(8)+kn(s)un(s). Then, lemma 2.1 and 2 of lemma
2.2 show that 5(s) = —kp—1(s). O



By lemma 2.2, we see that the dual curve uy,(s) is non-singular if and only if kr (s) # 0
and we obtain the following Serret Frenet type formula.

up(s) 0 wi(s) 0 -- 0 0 0 ug(s)
uy (s) —k1(s) 0  ma(s) -0 0 0 g (s)
us(s) 0 —ra(s) 0 . 0 0 0 uz(s)
ul,_o(s) 0 0 0 0  knp_1(s) O up—2(s)
w1 (s) 0 0o 0 —bne1(s) 0 ka(s) | | wn1(s)
un (s) 0 0 0o . 0 —kn(s) 0 un ()

By using the Serret Frenet type formula again and again, we obtain the following
lemma 2.3.

Lemma 2.3 For anyi (0<1i<mn—2), we have the following.

Lou(s) Lla(s)=0 1<j<n—i-1),

n—i

2. wi(s) - G2 (s) = ()" TI5Z0 T Rni(s)-

3 Explicit formula for the pedal curve relative to P

Let r be an m-dimensional spherical unit speed curve and let P be any point in
S™ — {+un(s) | s € I}. By using the orthogonal frame {ug(s), - ,un(s)}, we may
decompose P as

P =S (P ui(s)ui(s).
1=0
Lemma 3.1
pedy p(s) = L (P — (P un(s))un(s)).

1—(P-un(s))?

Proof of lemma 3.1 For any s € I, by subtracting (P - un(s))un(s) from P we obtain
the vector P — (P upn(s))un(s) in R™*! which is positive scalar multiple of pedy p(s).
Normalizing this vector gives the right hand side of the formula in lemma 3.1, which
must be the vector pedy p(s). O

By this formula, we have the following.

Lemma 3.2

ped/r}p(s) =0 <= kn(s)=0o0rPc Sﬁ:i(s).



Proof of lemma 3.2 By differentiating ped, p and using lemmata 2.2 and 3.1, we have
the following.

pedy p(s)
(P-un(s)(P un—1(s))

[

n—

= —kn(s 3 P-u;(s))u;(s
(s) 0 (P o)D)} i:O( (s))ui(s)
1
+kn(s n P-un(s))up—1(s) + (P-up_1(s))un(s)) .
()uf(P.u”(s))Q)E(( (8)tn—1(5) + (P p—1(5))un(s) )
Since {ug(s),- - ,un(s)} is an orthogonal frame, we see that pedfmp(s) = 0 if and only
it kn(s) =0or PeSy2 . O

Let P be a point of S™ — {fun(s) | s € I'}. We consider the following C°° map

Up: S —{+P} — S™
Up(x) = ———— (P~ (P-x)x).
1— (P -x)2

We see that the image ¥p(S™ — {£P}) is inside the open hemisphere centered at P.
Let this open hemisphere, the set 7(S™ — {£P}) be denoted by Xp, Bp respectively,
where 7 : S — P™(R) is the canonical projection. Note that X p is C°° diffeomorphic
to the n-dimensional open ball {(z1, - zn) | iy x? < 1}

Since ¥p(x) = ¥p(—x), ¥p induces the map Up : Bp — Xp. Then, lemma 3.1
shows that ped, p is factored into three maps in the following way.

pedy p(s) = Up omoun(s).

4 Map of blow up type

Let p: B — R" be the blow up of R" centered at the origin.

Lemma 4.1 Let P be a point of S™ —{£un(s)}. Then, there exist C™ diffeomorphisms
hs : Bp — B and hy : Xp — R"™ such that the equality hy o Wp = p o hs is satisfied.

By lemma 4.1, it is reasonable to call @p a map of blow up type.

Proof of lemma 4.1 By a suitable rotation of S™ if necessary, we may assume that
P =(0,---,1). Forany i (1 <i<mn)and any (z1, - ,Zn+1) € S — {+P} with
x; # 0 we put

T T

Z; x
: ,—,*t&l’l()\)xi, ’L+13"' 7_n)a

opi(m(x1,- -, Tny1)) = (xi’ o p =

where X = sin ™! (z,,41) (=% < A< %). Then, we see easily that for any i,j (1 <
1,7 < n) the following equality holds
-1 _ -1
PPjOPpi =¥ji°Pi >

where {(U1,¢1) -+, (Un,¢n)} is the standard atlas for the blowing up p : B — R".
Thus, the set

{Up1,0pP1), s (Upn,oPn)}



can be an atlas for 7(S™ — {£P}), where Up; = {m(z1, - ,&n41) | z; # 0}

Next, we express our map ﬁp by using euclidean coordinates (ui, -+ ,un). Since
we have assumed P = (0,---,0,1), for x = (z1,--- ,@n,sin(A)) we have
1
— (P — (P -x)x) = (—tan(MN)x1, -, — tan(A)xp, cos(A
1—(P~x)2( (P-x)x) = ( (N (A)zn, cos(N))

and therefore for any ¢ (1 <7 < n) we have
U -1 — ) . ETRETY . )
qo POSOP;L'(ula"' 7“‘”) - ('LLl’LL/L,"' y Ui—1Ugy Ugy Ujp- 1 Uy "+ au’ﬂu’t)7

where ¢ : R” x R — R" is the canonical projection.

Since this expression is completely the same as that of the blow up by using the
standard coordinate system (U, ;) (1 < ¢ < n) and the restriction ¢|x, : Xp —
q(Xp) is a C* diffeomorphism, we see that lemma 4.1 is proved for §p|UP_i and
ply,. Thus, in order to finish the proof of lemma 4.1 it suffices to show that for any
1,7 (1 <1,7 <n) the equality

-1 —1
e, oppi(m(z1,  Tny1)) = @5 oppj(m(T1,r  Tnt))

holds for (1, - ,Zny1) € Up;NUp ;. This holds since we have already checked that
the patching relations for our {(Up;,¢p.i)}1<i<n are completely the same as for the
standard atlas of B. a

5 Proof of theorem 1.1

: —2 —2 -3 0 —1
Since {Sﬁn(so) —SZ7L72(50), S:llnfz(so) _S:lln—S(SO)7 T SUO(SO) _S“*1(5

ification of S™ —{4un(sg)}, “if parts” of 1, 2 of theorem 1.1 follows from “only if parts”
of 1, 2 of theorem 1.1. Thus, we show only “only if parts” in the following.

0)} gives a strat-

[Proof of “only if part” of 1 By lemma 3.2, ped/r,P(so) # 0 in this case. Thus, the
map-germ ped, p(sp) is non-singular. a

[Proof of “only if part” of 2| By a suitable rotation of S™ if necessary, we may as-
sume that P = (0,--- ,0,1) € R""!. Then, since P € S —gi-t , by a further-

u;(so)  “u;_1(so)
more suitable rotation of S™ if necessary we may assume that un(sg) = (1,0, ,0),

uy—1(sg) = (0,1,0,---,0), -+, ui+1(sp) = ( 0,---,0 ,1, 0,---,0 ); and
N——’ N——’
(n—i—1) elements  (i+1) elements
u;(sp) (0 < j <4) have the following form
uj(SO):( 0,---,0 7a(n—i)j7"'7anj)7
(n—i) elements ;1) elements

where a,,; # 0.
By lemma 2.3, we see that the following three hold for component function-germs
UQn, ** » Unn Of the map-germ up = (ugp, - ,unn) : (I,s0) — S™.

1. Forany j (0 <j <mn—i— 1), the lowest degree of non-zero terms of u;y, is j.
2. For any j (n—1i<j <n—1),the lowest degree of non-zero terms of u;,, is more
than or equal to n — .



3. The lowest degree of non-zero terms of uny is n — i.

Therefore, by lemma 4.1 we see that the following two hold for component function-
germs 1, -+ ,¢¥n of the map-germ (qo¥p o 901;11) o(ppromoun): (I,s0) = R™.

1. Forany j (1 <j < mn—1),the lowest degree of non-zero terms of ¢; is n—i+4j—1,
2. Forany j (n—i+1<j <n), the lowest degree of non-zero terms of v; is 2n — 2i.

Let &1 be the set of all C* function germs with one variable (R,0) — R, m1 be
its subset consisting of all function-germs with zero constant terms. Then, m?iié'l isa
finitely generated £1-module. We put f(t) = t" % and apply the Malgrange preparation
theorem (for instance, see [3], [6], [9]) to m?_ié‘l and f. Then we see that for any

function-germ g € my ™ "1 there exists a certain C*° function-germ 1 such that

g(t) = (", £2THT,

Thus, for our map-germ pedy p : (I,50) — (S™,pedy p(so)) there exists a germ of C*°
diffeomorphism hy : (S™, pedy p(sg)) — (R™,0) such that

he o pedy,p(s) = ((s = 50)" ;- , (s —50)>" 271, 0,0,
~ ~  N——
(n—1i) elements i elements
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