Supplimentary Data

Microphase-separated structures of ion gels consisting

of ABA-type block copolymers and an ionic liquid: A

key to escape from the trade-off between mechanical

and transport properties

Haruna Mizuno, a Kei Hashimoto, a,b Ryota Tamate, a,c Hisashi Kokubo, a Kazuhide Ueno, a

Xiang Li^d and Masayoshi Watanabe*a,b

^a Department of Chemistry and Life Science, Yokohama National University, 79-5

Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

^b Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai,

Hodogaya-ku, Yokohama 240-8501, Japan

^c Center for Green Research on Energy and Environmental Materials, National Institute

for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan

^d Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa,

Chiba 277-8581, Japan

E-mail: mwatanab@ynu.ac.jp

Figure S1 ¹H NMR spectra of (a) PEO-CTA, (b) CTA-PSt-*b*-PEO-*b*-PSt-CTA, and (c) PSt-*b*-PEO-*b*-PSt in CDCl₃.

Figure S2. GPC curves of (a) SOS-66 and (b) SOS-84 (eluent: THF, detector: RID, standard: PSt).

Table S1. Composition, ϕ_{soft} , and microstructure of ion gels.

Polymer	Polymer content (wt%)	φ _{soft} (%)	Microstructure 1)
SOS-66	40	68.5	S 3)
	80	44.1	$H^{R 2,3)}$
	90	38.9	$G^{2,3)}$
SOS-84	40	59.2	L ^{2,3)}
	60	42.9	$G + L^{2,3}$
	70	35.6	H ²⁾
	80	28.7	$S^{R \ 2)}$

¹⁾ S: spheres; S^R: reverse S; H: hexagonally-packed cylinders; H^R: reverse H; G: gyroids;

L: lamellas.

²⁾ Assigned by AFM measurements.

³⁾ Assigned by SAXS measurements.

Figure S3. FFT images (500 nm \times 500nm) of (a) 90 wt% SOS-66/[C₂mim][NTf₂] and (b) 60 wt% SOS-84/[C₂mim][NTf₂] ion gels.

Figure S4. TEM image of 60 wt% SOS-84/[C₂mim][NTf₂] ion gel, obtained by JEM-1010 (JEOL, Japan) using a single-tilt sample holder. The ion gel sample was dissolved in THF to prepare the 0.5 wt % SOS ion gel/THF solution. The solution was cast onto the carboncoated cupper substrate and evaporated at room temperature. The THF was completely dried under vacuum to prepare a thin ion gel sample (~several hundred nm). The measurements were performed at room temperature.

Figure S5. FFT images (500 nm×500nm) of 80 wt% SOS-66/[C₂mim][NTf₂].

Figure S6. SAXS profile of SOS/[C₂mim][NTf₂] ion gel with various polymer content. The profiles were assigned to (a) S, (b) H, and (c) L. A fitting line for S structure corresponds to the Percus-Yevick model, which assumes spherical cores without a highly-ordered packing structure. [S1]

Figure S7. Temperature sweep measurements of G' for SOS-66/[C₂mim][NTf₂] and SOS-84/[C₂mim][NTf₂].

Table S2. Structure, σ , and σ_0 at 100 °C of ion gels with various polymer content.

Polymer / wt%	Structure	σ^{1} / mS cm ⁻¹	σ ₀ ²⁾ / mS cm ⁻¹
SOS-66 / 40 wt%	S	5.73	9.73
SOS-66 / 80 wt%	H^R	0.014	2.56
SOS-84 / 40 wt%	L	2.51	13.1
SOS-84 / 60 wt%	G + L	0.37	9.25
SOS-84 / 70 wt%	Н	0.023	8.29
SOS-84 / 80 wt%	S^R	0.0066	5.45

¹⁾ Ionic conducutivity of ion gels consisting of SOS and $[C_2mim][NTf_2]$.

REFERENCES

[S1] K. Hashimoto, M. Hirasawa, H. Kokubo, R. Tamate, X. Li, M. Shibayama, M. Watanabe, Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures, *Macromolecules*, **52**, 8430-8439 (2019). doi: 10.1021/acs.macromol.9b01907.

²⁾ Ionic conducutivity of [C₂mim][NTf₂] solutions of PEO containing the same volume fraction of PEO as the corresponding ion gels.