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LIMIT OF THE HAUSDORFF DISTANCE FOR ONE-PARAMETER

FAMILIES OF WULFF SHAPES CONSTRUCTED BY AFFINE

PERTURBATIONS OF DUAL WULFF SHAPES∗

HUHE HAN† AND TAKASHI NISHIMURA‡

Abstract. It is known that the Wulff construction is an isometry. In this paper we provide
an alternative proof of this fact. Moreover, according to this result we investigate the limit of the
Hausdorff distance for one-parameter families of Wulff shapes constructed by affine perturbations of
dual Wulff shapes.
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1. Introduction. Throughout this paper, we let n, Sn and R+ be a positive
integer, the unit sphere of Rn+1 and the set consisting of positive real numbers re-
spectively. Define the set C0(Sn,R+) as follows

C0(Sn,R+) = {γ : Sn → R+| γ is continuous} .

For any γ ∈ C0(Sn,R+) and any θ ∈ Sn, let Γγ,θ be the following half-space, where
the dot in the center stands for the scalar product of two vectors x, θ ∈ R

n+1.

Γγ,θ =
{

x ∈ R
n+1

∣

∣ x · θ ≤ γ(θ)
}

.

The Wulff shape associated with γ, denoted by Wγ , is the following intersection

Wγ =
⋂

θ∈Sn

Γγ,θ.

This construction is well-known as the Wulff construction of geometric model for an
equilibrium crystal introduced by G. Wulff in [9]. By definition, it is clear that Wulff
shape is a convex body containing the origin of Rn+1 as an interior point. Conversely,
it is known that any convex body containing the origin as an interior point is a Wulff
shape associated with an appropriate continuous function ([8]). For details on Wulff
shapes, see for example [2, 5, 6, 8].

Given a γ ∈ C0(Sn,R+), set

graph(γ) =
{

(θ, γ(θ)) ∈ R
n+1 − {0}

∣

∣ θ ∈ Sn
}

,

where (θ, γ(θ)) is the polar plot expression for a point of Rn+1 − {0}. The mapping
inv : Rn+1−{0} → R

n+1−{0}, defined as follows, is called the inversion with respect
to the origin of Rn+1.

inv(θ, r) =

(

−θ,
1

r

)

.
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Let Γγ be the boundary of the convex hull of inv(graph(γ)). If the equality Γγ =
inv(graph(γ)) is satisfied, then γ is called a convex integrand. If the convex hull
of inv(graph(γ)) is a strictly convex body and the equality Γγ = inv(graph(γ)) is
satisfied, then γ is called a strictly convex integrand. We called the convex hull of
inv(graph(γ)) is the dual Wulff shape of Wγ . The notion of convex integrand was
firstly introduced by J. Taylor in [8] and it plays a key role for studying Wulff shapes
(for details on convex integrands, see for instance [5, 8]). Let CI(Sn,R+) be the set
consisting of convex integrands.

CI(Sn,R+) =
{

γ ∈ C0(Sn,R+)
∣

∣ γ : convex integrand
}

.

Let Hconv,0

(

R
n+1

)

be the set consisting of convex bodies containing the origin of
R

n+1 as an interior point.

Hconv,0

(

R
n+1

)

=
{

W ⊂ R
n+1

∣

∣ W : convex body and 0 ∈ R
n+1 is an intrior point of W

}

.

Then, the mapping W : C0(Sn,R+) → Hconv,0

(

R
n+1

)

, defined by

W(γ) = Wγ ,

is well-defined. The space C0(Sn,R+) (resp., Hconv,0

(

R
n+1

)

) is a metric space with
respect to the maximum distance (resp., the Pompeiu-Hausdorff distance). For details
on the Pompeiu-Hausdorff distance see for instance [1]. It is not difficult to see that
the restriction of W to CI(Sn,R+) is continuous and bijective. Let

C0
(

CI(Sn,R+),Hconv,0

(

R
n+1

))

(∗)

be the set consisting of continuous mappings from CI(Sn,R+) into Hconv,0

(

R
n+1

)

with respect to the maximum distance and the Pompeiu-Hausdorff distance respec-
tively.

In [7], it is shown that the restriction of W to CI(Sn,R+) is an isometry. In this
paper we first give an alternative proof of this result (see Section 3).

Theorem 1 ([7]). The restriction of W to CI(Sn,R+),

W|CI(Sn,R+) : CI(Sn,R+) → Hconv,0

(

R
n+1

)

,

is an isometry.

According to this result, we investigate the limit of the Hausdorff distance for one-
parameter families of Wulff shapes constructed by affine perturbations of dual Wulff
shapes. There are several steps for our investigation. Firstly, we construct a strictly
convex integrand as follows. For any a ∈ R

n+1−{0}, any positive real number c such
that c > ||a||, we consider the function fa,c : S

n → R defined by

fa,c(X) = a ·X + c.

Then, as shown in p. 237 of [4], fa,c we have the following:

Proposition 1.
(1) For each i, fai,ci is stable and Sing(fai,ci), which consists of Morse singular

points, is the set
{

ai

||ai||
,− ai

||ai||

}

.
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(2) Suppose that a1, a2 are linearly independent. Then, the mapping

(fa1,c1 , fa2,c2) : Sn → R
2 is stable and Sing ((fa1,c1 , fa2,c2)), which consists

of definite fold points, is just the circle Sn ∩ (Ra1 + Ra2).
(3) Suppose that a1, a2 are linearly dependent. Then, the mapping (fa1,c1 , fa2,c2) :

Sn → R
2 may be regarded as a stable function, and Sing ((fa1,c1, fa2,c2)),

which consists of Morse singular points, is the set
{

a1

||a1||
,− a1

||a1||

}

.

We concentrate on fa,c from the viewpoint of convexity. We have the inquality
a ·X + c = ||a||cosθ + c > 0, where θ is the angle between vectors a and X in R

n+1.
Thus, fa,c : Sn → R is a positive function (for details, see the proof of Proposition
2).

Proposition 2. For any i ∈ {1, 2}, suppose that 3
2 ||ai|| < ci. Let gai,ci : S

n →
R+ be defined by gai,ci(X) =

√

fai,ci(X). Then, graph(gai,ci) is the boundary of a

strictly convex body.

Corollary 1. For any i, suppose that 3
2 ||ai|| < ci. Define 1

gai ,ci
: Sn → R+ by

1
gai ,ci

(X) = 1√
fai,ci (X)

. Then, 1
gai ,ci

is a strictly convex integrand.

Nextly, for any two given convex integrands γ1, γ2 and any a1, a2 ∈ R
n+1 − {0},

c1 > 3
2 ||a1||, c2 > 3

2 ||a2||, we consider the following functions Γ1,t,Γ2,t : Sn → R+

defined as follows,

Γ1,t(X) =
tγ1

1 + tγ1ga1,c1

, Γ2,t(X) =
tγ2

1 + tγ2ga2,c2

,

where t ∈ (0,∞). Since gai,ci(i = 1, 2) is a strictly convex integrand by Corollary 1,
it is not difficult to show that the function Γ1,t and Γ2,t are strictly convex integrand,
for any sufficiently large t ∈ (0,∞) (see Proposition 5 in Section 2).

Proposition 3. Let γ1, γ2 be convex integrands. Let ga1,c1 , ga2,c2 be as above for

a1, a2 ∈ R
n+1 − {0} and c1 > 3

2 ||a1||, c2 > 3
2 ||a2||. Then we have the following.

(1) limt→∞ WΓi,t
= Wlimt→∞ Γi,t

= W 1
ga

i
,ci

(i = 1, 2),

(2) limt→∞ h(WΓ1,t
,WΓ2,t

) = d
(

1
ga1,c1

, 1
ga2,c2

)

.

By Proposition 3, it follows that the Hausdorff distance of the limit of one-
parameter families of the Wulff shapes {WΓi,t

} (t → ∞) does not depend on the
given γi, it does depend only on the given convex integrand gai,ci . Moreover, we have
the following result.

Theorem 2. Let a1, a2 be two vectors of Rn+1 − {0} and let c1, c2 be positive
real numbers such that 3

2 ||ai|| < ci for each i. Let gai,ci : Sn → R+ be the function

defined by gai,ci(X) =
√
ai ·X + ci. Then, the following equality holds:

d

(

1

ga1,c1

,
1

ga2,c2

)

= max

{∣

∣

∣

∣

1
√
a1 ·X + c1

−
1

√
a2 ·X + c2

∣

∣

∣

∣

∣

∣

∣

∣

X ∈ S
n ∩ (Ra1 + Ra2)

}

.

This paper is organized as follows. In Section 2, preliminaries are given. The
proofs of Proposition 2 and Proposition 3 are given in Section 2. The proof of Theorem
1 (resp., Theorem 2) is given in Section 3 (resp., Section 4). In the Section 5, an
alternative proof of Theorem 2 and some examples are given.
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2. Preliminaries.

Proof of Proposition 2. We would like to show that graph(gai,ci) is the boundary
of a strictly convex body. In order to do so, take two distinct point P,Q ∈ Sn so that
P 6= −Q. Let ξ : I = (p, q) → Sn be the geodesic with arc-length parameter such
that lims→p ξ(s) = P and lims→q ξ(s) = Q. Then, it is sufficient to show that the
curvature of gai,ci ◦ ξ(s) is always positive for any s ∈ I. Since ξ is a geodesic of Sn,
its image ξ(I) is contained in a plane. Hence, from the first we may assume that ξ is
a map I → S1. Thus, it is sufficient to show that for the function gi : I → R with the

form gi(θ) =
√
λi cos θ + µi sin θ + ci where λi = ai · P, µi = ai · Q−(P ·Q)P

||Q−(P ·Q)P || and for

any θ ∈ I,

g2i (θ) + 2g′i
2
(θ)− gi(θ)g

′′
i (θ)

(

g2i (θ) + g′i
2(θ)

)
3
2

> 0. (∗)

The numerator of the above formula is as follows.

g2i (θ) + 2g′i
2
(θ)− gi(θ)g

′′
i (θ)

= (λi cos θ + µi sin θ + ci) + 2

(−λi sin θ + µi cos θ

2gi(θ)

)2

−gi(θ)
2(−λi cos θ − µi sin θ)g

2
i (θ)− (−λi sin θ + µi cos θ)

2

4g3i (θ)

=
3

2
(λi cos θ + µi sin θ) + ci +

3(−λi sin θ + µi cos θ)
2

4g2i (θ)

≥ 3

2
(λi cos θ + µi sin θ) + ci

≥ −3

2
||ai||+ ci > 0.

Therefore, (∗) is always positive.
Since a convex integrand γ is of class C1 if and only if its Wulff shape is a strictly

convex body ([3]), by Proposition 2, we have the following.

Proposition 4. Let γ : Sn → R+ be a convex integrand, a ∈ R
n+1 − {0} and

c > 3
2 ||a||. Then the boundary of the Wulff shape W γ

1+γga,c
is of class C1.

Next, for given convex integrands γ
1
, γ

2
and a1, a2 ∈ R

n+1 − {0}, c1 >
3
2 ||a1||, c2 > 3

2 ||a2||, we consider the convex integrands Γ1,t,Γ2,t : S
n → R+ defined

as follows, where t ∈ (0,∞).

Γ1,t(X) =
tγ

1
(X)

1 + tγ
1
(X)ga1,c1(X)

,Γ2,t(X) =
tγ

2
(X)

1 + tγ
2
(X)ga2,c2(X)

.

Proposition 5. Let t ∈ R+ be sufficiently large. Then, for any i ∈ {1, 2}, Γi,t

is always a strictly convex integrand.

Proof. Remember that

1

Γi,t(X)
=

1

t

(

1

γi(X)
+ tgai,ci(X)

)

.
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Similarly as in the proof of Proposition 2, we would like to show that if t is sufficiently
large, then

graph

(

1

γi
+ tgai,ci

)

is the boundary of a strictly convex body. In order to do so, it is sufficient to show
that there exists a positive number T such that for any t satisfying t > T and any
two distinct points P,Q ∈ Sn such that P 6= −Q and the geodesic ξ : I → Sn with
arc-length parameter connecting P and Q, the curvature of

1

γi ◦ ξ
+ tgai,ci ◦ ξ

is always positive. Again similarly as in the proof of Proposition 2, from the first we
may assume that ξ is a mapping I → S1. Moreover, for simplicity, we set

f =
1

γi ◦ ξ(s)
, g = gai,ci ◦ ξ(s).

Then, it is sufficient to show that there exists a positive number T such that for any
t satisfying t > T and any two distinct points P,Q ∈ Sn such that P 6= −Q, the
geodesic ξ : I → Sn with arc-length parameter connecting P,Q and any s ∈ I,

(f + tg)2 + 2(f ′ + tg′)2 − (f + tg)(f ′′ + tg′′)

((f + tg)2 + (f ′ + tg′)2)
3
2

> 0. (∗∗)

The denominator of (∗∗) is always positive. We concentrate on its numerator. Since
f2+2f ′2− ff” is always non-negative and g2+2g′2− gg” is always positive, we have
the following:

(f + tg)2 + 2(f ′ + tg′)2 − (f + tg)(f ′′ + tg′′)

= (g2 + 2g′2 − gg′′)t2 + 2(fg + 2f ′g′ − f ′′g − fg′′)t

+(f2 + 2f ′2 − ff ′′)

≥ t(g2 + 2g′2 − gg′′)

(

t+ 2
fg + 2f ′g′ − f ′′g − fg′′

g2 + 2g′2 − gg′′

)

.

Let C be a great circle of Sn. For the C, set

MC = min
X∈C

2
fg + 2f ′g′ − f ′′g − fg′′

g2 + 2g′2 − gg′′
.

Of course, the value MC depends on C. In other words, the function

M : V2

(

R
n+1

)

→ R

defined by M((v1,v2)) = MC is a well-defined continuous function, where V2

(

R
n+1

)

is the Stiefel manifold consisting of orthonormal 2-frames in R
n+1 and C =

(Rv1 + Rv2) ∩ Sn. Since V2

(

R
n+1

)

is compact, the image of M , too, is a compact
set. Denote its minimal value by m.

Set T = |m|. Then, for any t satisfying t > T , any two distinct points P,Q ∈ Sn

such that P 6= −Q, the geodesic ξ : I → Sn connecting P,Q and any s ∈ I,

(f + tg)2 + 2(f ′ + tg′)2 − (f + tg)(f ′′ + tg′′)

((f + tg)2 + (f ′ + tg′)2)
3
2

> 0.
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Proof of Proposition 3. Since the space consisting of non-empty compact set of
R

n+1 is a complete metric space with respect to the Pompeiu-Hausdorff distance and
the mapping W is continuous, the following equality holds.

lim
t→∞

WΓi,t
= Wlimi→∞Γi,t

. (i = 1, 2)

Also, since

lim
t→∞

Γi,t = lim
t→∞

1
1
tγ

i

+ gai,ci

=
1

gai,ci

,

the assertion (1)

lim
t→∞

WΓi,t
= Wlimt→∞ Γi,t

= W 1
ga

i
,ci

(i = 1, 2)

holds.
By Theorem 1, the assertion (2) easily follows from the following equality.

lim
t→∞

h(WΓ1,t ,WΓ2,t) = lim
t→∞

d

(

tγ
1

1 + tγ
1
ga1,c1

,
tγ

2

1 + tγ
2
ga2,c2

)

= d

(

1

ga1,c1

,
1

ga2,c2

)

.

3. Proof of Theorem 1.

Lemma 3.1. Given a convex integrand γ ∈ CI(Sn,R+) and a positive real number

a ∈ R+, define the continuous function γa : Sn → R+ by γa(θ) = γ(θ) + a for any

θ ∈ Sn. Then, the following equality holds.

Wγ,a
= B(Wγ , a).

Here, B(Wγ , a) means
⋃

P∈Wγ
B(P, a) =

⋃

P∈Wγ
{x ∈ R

n+1| ||x− P || ≤ a}.

Proof. We first prove the inclusion B(Wγ , a) ⊂ Wγa
. Suppose that there exists

a point P of the boundary of B(Wγ , a) such that P is not included in Wγa
. Then,

by the definition of Wulff shape, there exists a point θ of Sn such that the following
sharp inequality holds,

γ(θ) + a < P · θ.

Let Q be a point of the boundary of Wγ such that d(P,Q) = a. It is clear that there
exists a point Q such that d(P,Q) ≤ a. Suppose that there exists a point Q of the
boundary of Wγ such that d(P,Q) < a. Then, there exists a positive real number ε

satisfying B(P, ε) ⊂ B(Q, a). This means B(P, ε) ⊂ B(Wγ , a), which contradicts the

fact that P is a point of the boundary of B(Wγ , a). Thus, by the sharp inequality
γ(θ) + a < P · θ, the following holds.

γ(θ) + a < P · θ =

(

Q+ a
P −Q

||P −Q||

)

· θ = Q · θ +
(

a
P −Q

||P −Q||

)

· θ. (∗ ∗ ∗)

On the other hand, it is clear that the following holds for any θ of Sn.

Q · θ ≤ γ(θ) and

(

a
P −Q

||P −Q||

)

· θ ≤ a.
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Fig. 1. The hyperplanes TQB(P, b) and HQ,a.

Thus, we have the following.

Q · θ +
(

a
P −Q

||P −Q||

)

· θ ≤ γ(θ) + a.

This contradicts (∗ ∗ ∗).
Next, we prove the converse inclusion Wγa

⊂ B(Wγ , a). Suppose that there exists

a point P of Wγa
such that P is not included in B(Wγ , a). Then the intersection of

B(P, a) and Wγ is the empty set. Let b be the positive real number such that the
following equality holds.

B(P, b) ∩ ∂Wγ = {Q}.

It is clear that a < b = ||P −Q||. Let TQB(P, b) be the affine tangent hyperplane to

B(P, b) at Q (see Figure 1). Since Wγ is a convex body, it follows that TQB(P, b) is

a support hyperplane to Wγ at Q. This meas that Wγ ∩ TQB(P, b) is a subset of the
boundary of Wγ . Set

θ =
P −Q

||P −Q|| .

Then θ is a point of Sn. Notice that there exists a positive real number λ such
that P − Q = λ θ. It follows that Q · θ = γ(θ) and (θ, γ(θ)) ∈ TQB(P, b). By the
assumption, the hyperplane

HQ,a =

{

R ∈ R
n+1

∣

∣R = M + a
P −Q

||P −Q|| , M ∈ TQB(P, b)

}

does not contain the point Q and the intersection of the segment PQ and HQ,a is not
empty (see Figure 1). Thus the following sharp inequality holds,

γ(θ) + a = Q · θ + (a
P −Q

||P −Q|| ) · θ < Q · θ + (b
P −Q

||P −Q|| ) · θ = P · θ. (∗∗)
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Since P is a point of Wγa
, (∗∗) contradicts the inequality P · θ ≤ γa(θ).

Now we are ready to prove Theorem 1. It is enough to show the following two.

(1) h(Wγ1 ,Wγ2) ≤ d(γ1, γ2) for any γ1, γ2 ∈ CI(Sn,R+).
(2) d(γ1, γ2) ≤ h(Wγ1 ,Wγ2) for any γ1, γ2 ∈ CI(Sn,R+).

Suppose that (1) does not hold. Then, there exist two convex integrands γ1, γ2
such that the sharp inequality d(γ1, γ2) < h(Wγ1 ,Wγ2) holds. Set d(γ1, γ2) = a > 0.
By Lemma 3.1, there exists a point P of Wγ1 such that

P /∈ B(Wγ2 , a) = Wγ2,a .

Then by the definition of Wulff shape, there exists a point θ of Sn such that the
inequality γ2(θ) + a = γ2,a(θ) < P · θ holds. On the other hand, since P is a point of
Wγ1 , we have that P · θ ≤ γ1(θ) for any θ of Sn. By the assumption, it follows that

γ2(θ) + a < P · θ ≤ γ1(θ) < γ2(θ) + a.

Thus, we have a contradiction.
Next, we show the inequality (2). Suppose that there exist two convex inte-

grands γ1, γ2 such that the sharp inequality h(Wγ1 ,Wγ2) < d(γ1, γ2) holds. Set
h(Wγ1 ,Wγ2) = a > 0. By the definition of maximum distance, there exists a point θ
of Sn satisfying a < |γ1(θ)− γ2(θ)|. Then, without loss of generality, we may assume
that a < γ1(θ) − γ2(θ). Notice that for any θ of Sn, there exists a point Pθ of the
boundary of W such that the equality Pθ · θ = γ

W
(θ) holds. It follows that, for the

θ of Sn satisfying a < γ1(θ) − γ2(θ), there exists a point Pθ of the boundary of Wγ1

such that the following holds,

γ2(θ) + a < γ1(θ) = Pθ · θ.

By Lemma 3.1, it follows that

Pθ /∈ Wγ2,a = B(Wγ2 , a).

This contradicts the assumption h(Wγ1 ,Wγ2) = a. Therefore, the restriction of W to
CI(Sn,R+) is an isometry.

By Theorem 1, we clearly have the following (see Figure 2).

Corollary 2. Let W1,W2 be two elements of Hconv,0(R
n+1) and let T : Rn+1 →

R
n+1 be a parallel translation such that the origin 0 is an interior point of T (W1) ∩

T (W2). Then, the following equality holds.

d(γ
W1

, γ
W2

) = d(γ
T (W1)

, γ
T (W2)

).

For any c ∈ R+, let c∗ : Sn → R+ be the constant function c∗(Sn) = c. For
any W ∈ Hconv,0(R

n+1), define the function w∗ : Sn → R+ by w∗(θ) = min{c ∈
R+ | W ⊂ Γc∗,θ} for any θ ∈ Sn. Then, notice that γ

W
= w∗. By this observation,

the following is clearly obtained as a corollary of Theorem 1.

Corollary 3. Let W1,W2 be two convex bodies such that the intersection W1 ∩
W2 is a convex body. Then, h(W1,W2) can be calculated radially from any interior

point of W1 ∩W2. More precisely, the following holds.

h(W1,W2)

= max
θ∈Sn

|min{c ∈ R+ | W1 ⊂ (x + Γc∗,θ)} −min{c ∈ R+ | W2 ⊂ (x + Γc∗,θ)}| ,
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Fig. 2. d(γ
W1

, γ
W2

) = d(γ
T (W1)

, γ
T (W2)

).

where x is an interior point of W1 ∩W2.

For given two convex bodies such that their intersection is a convex body, Corollary 3
gives an algorithm that can compute an approximate value of the Pompeiu-Hausdorff
distance with high precision.

4. Proof of Theorem 2. Since

lim
t→∞

Γi,t = lim
t→∞

tγi
1 + tγigai,ci

= lim
t→∞

γi
1
t
+ γigai,ci

=
1

gai,ci

,

by Corollary 1 (the Wulff construction is continuous) and Proposition 2 ( 1
gai,ci

is a

strictly convex integrand if 3
2 ||ai|| < ci), the following holds:

lim
t→∞

W (Γi,t) = W
(

lim
t→∞

Γi,t

)

= W 1
ga

i
,ci

(i = 1, 2).

Hence we have

lim
t→∞

h (W (Γ1,t) ,W (Γ2,t)) = h
(

lim
t→∞

W (Γ1,t) , lim
t→∞

W (Γ2,t)
)

= h
(

W 1
ga1,c1

,W 1
ga2,c2

)

.

Therefore, by Theorem 1 (h(Wγ1 ,Wγ2) = d(γ1, γ2) for convex integrands γ1, γ2),

lim
t→∞

h (W (Γ1,t) ,W (Γ2,t)) = d

(

1

ga1,c1

,
1

ga2,c2

)

.

Next, we consider the mapping (ga1,c1 , ga2,c2) : S
n → R

2. Set G = (ga1,c1 , ga2,c2),
F = (fa1,c1 , fa2,c2). Let H : R

2
+ → R

2
+ be the C∞ diffeomorphism defined by

H(X1, X2) =
(√

X1,
√
X2

)

. Then, it is clear that

G = H ◦ F.
Hence, H gives the correspondence between the boundary of G(Sn) and the boundary
of F (Sn). On the other hand, by definition, we have the following:

d

(

1

ga1,c1

,
1

ga2,c2

)

∈
{
∣

∣

∣

∣

1

X1
− 1

X2

∣

∣

∣

∣

| (X1, X2) ∈ ∂G(Sn)

}

,
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where ∂G(Sn) stands for the boundary of G(Sn). Moreover, by Proposition 1 (Any
projection of Sn is stable), ∂F (Sn) is characterized as follows:

∂F (Sn) = {F (θ) | θ ∈ Sn ∩ (Ra1 + Ra2)} .

Therefore, as a conclusion, we have the following:

lim
t→∞

h
(

WΓ1,t ,WΓ2,t

)

= d

(

1

ga1,c1

,
1

ga2,c2

)

= max

{∣

∣

∣

∣

1

ga1,c1(θ)
− 1

ga2,c2(θ)

∣

∣

∣

∣

∣

∣

∣

∣

θ ∈ Sn ∩ (Ra1 + Ra2)

}

.

5. Appendix. Since the function 1
ga,c

: Sn → R+ defined by

1

ga,c
(X) =

1
√

fa,c(X)
,

a ∈ R
n+1 − {0} and c > 3

2 ||a||, we have that

d

(

1

ga,c1
,

1

gb,c2

)

= max{|(a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 |X ∈ Sn}.

Let g : Sn → R be a mapping defined by g(X) = X · X − 1. Let F : Sn → R be a
mapping defined by

F (X) = (a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 − λg(X),

where λ is a constant. Set a = {a1, . . . , an+1},b = {b1, . . . , bn+1}. If X is a local
conditional extrema point under the constraints g(X) = 0, by method of Lagrange
multipliers, the following equalities holds.































Fx1 = − 1
2 (a ·X + c1)

− 3
2 a1 +

1
2 (b ·X + c2)

− 3
2 b1 − 2λx1 = 0,

Fx2 = − 1
2 (a ·X + c1)

− 3
2 a2 +

1
2 (b ·X + c2)

− 3
2 b2 − 2λx2 = 0,

...
...

...

Fxn+1 = − 1
2 (a ·X + c1)

− 3
2 an+1 +

1
2 (b ·X + c2)

− 3
2 bn+1 − 2λxn+1 = 0,

Fλ = x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.

(�)

The equalities (�) can also be written as follows.
{

− 1
2 (a ·X + c1)

− 3
2 a+ 1

2 (b ·X + c2)
− 3

2b = 2λX,

x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.

This implies that ifX is a local conditional extrema point under the constraint g(X) =
0 then the vectors a, b and X are linearly dependent. So we have that

d

(

1

ga,c1
,

1

gb,c2

)

= max{|(a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 |
∣

∣X ∈ Sn}

= max{|(a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 |
∣

∣X ∈ Sn ∩ (Ra + Rb)}.
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5.1. Some special case of Theorem 2. In the case of a=b. In this case, we
can write the equalities (�) as































Fx1 = − 1
2 (a ·X + c1)

− 3
2 a1 +

1
2 (a ·X + c2)

− 3
2 a1 − 2λx1 = 0,

Fx2 = − 1
2 (a ·X + c1)

− 3
2 a2 +

1
2 (a ·X + c2)

− 3
2 a2 − 2λx2 = 0,

...
...

...

Fxn+1 = − 1
2 (a ·X + c1)

− 3
2 an+1 +

1
2 (a ·X + c2)

− 3
2 an+1 − 2λxn+1 = 0,

Fλ = x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.

Since − 1
2 (a ·X + c1)

− 3
2 + 1

2 (a ·X + c2)
− 3

2 is never be zero, it follows that







a1
x1

=
a2
x2

= · · · = an+1

xn+1
,

x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.

This implies that ifX is a local conditional extrema point under the constraint g(X) =
0, then vectors X and a are linearly dependent. So in this case a=b, we have that

d(
1

ga,c1
,

1

gb,c2
) = max{|(a ·X + c1)

− 1
2 − (b ·X + c2)

− 1
2 |
∣

∣X ∈ Sn}

= max{|(||a||+ c1)
− 1

2 − (||a||+ c2)
− 1

2 |,
|(−||a||+ c1)

− 1
2 − (−||a||+ c2)

− 1
2 |}.

Example. Let n = 1, a1 = a2 ∈ R
2 − {0} and 3

2 ||a1|| < c2 < c1. Let X =
(cos θ, sin θ) ∈ S1, We consider the mapping G : Sn → R

2 − {0} defined as

G(X) =

(

1

ga1,c1(X)
,

1

ga2,c2(X)

)

.

Let K is the positive real number such that d
(

1
ga1,c1

, 1
ga2,c2

)

= K. Then for any

X ∈ S1, we have that d
(

1
ga1,c1 (X) ,

1
ga2,c2 (X)

)

≤ K. This implies that

the lines y = x−K or y = x+K is tangent to image of G at the

point
(

1
ga1,c1 (X) ,

1
ga2,c2(X)

)

such that d
(

1
ga1,c1

, 1
ga2,c2

)

=
∣

∣

∣

1
ga1,c1 (X) − 1

ga2,c2(X)

∣

∣

∣
. (⋆)

Moreover, by assumption, we know that the point X ∈ S1 gives the distance

d
(

1
ga1,c1

, 1
ga2,c2

)

satisfies the equality

(

1

ga1,c1(X)

)′

=

(

1

ga2,c2(X)

)′

. (⋆⋆)

Since

d

dθ
G(cos θ, sin θ) =

(

− 1

2
(a1 cos θ + a2 sin θ + c1)

− 3
2 (−a1 sin θ + a2 cos θ),

−1

2
(a1 cos θ + a2 sin θ + c2)

− 3
2 (−a1 sin θ + a2 cos θ)

)

,
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by the equality (⋆⋆), we know that the point gives the distance d( 1
ga,c1

, 1
ga,c2

) is satisfies

the following equality,

−1

2
(a1 cos θ + a2 sin θ + c1)

− 3
2 (−a1 sin θ + a2 cos θ)

= −1

2
(a1 cos θ + a2 sin θ + c2)

− 3
2 (−a1 sin θ + a2 cos θ).

This implies

−1

2

(

(a1 cos θ + a2 sin θ + c1)
− 3

2 − (a1 cos θ + a2 sin θ + c2)
− 3

2

)

(−a1 sin θ + a2 cos θ) = 0.
(∗)

Since the part − 1
2

(

(a1 cos θ + a2 sin θ + c1)
− 3

2 − (a1 cos θ + a2 sin θ + c2)
− 3

2

)

is al-

ways non zero real number for any (cos θ, sin θ) ∈ S1, the equality (∗) holds if and
only if (−a1 sin θ + a2 cos θ) = 0, namely, the singular point of mapping G. It follows
that the point (cos θ, sin θ) gives d( 1

ga1,c1
, 1
ga2,c2

) then there exists a real number m

such that (cos θ, sin θ) = m(a1, a2).

In the case of ka = b, k is a real number. In this case, we can write the equalities
(�) as































Fx1 = − 1
2 (a ·X + c1)

− 3
2 a1 +

1
2 (ka ·X + c2)

− 3
2 ka1 − 2λx1 = 0,

Fx2 = − 1
2 (a ·X + c1)

− 3
2 a2 +

1
2 (ka ·X + c2)

− 3
2 ka2 − 2λx2 = 0,

...
...

...

Fxn+1 = − 1
2 (a ·X + c1)

− 3
2 an+1 +

1
2 (ka ·X + c2)

− 3
2 kan+1 − 2λxn+1 = 0,

Fλ = x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.

In the same way, we have that

d

(

1

ga,c1
,

1

gb,c2

)

= max{|(a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 |X ∈ Sn}

= max{|(||a||+ c1)
− 1

2 − (k||a|| + c2)
− 1

2 |,
|(−||a|| + c1)

− 1
2 − (−k||a||+ c2)

− 1
2 |}.

In the case of a = (m, 0, . . . , 0) and b = (0, . . . , 0, r), where m, r are non-zero real numbers.
In this case, we can write the equalities (�) as































Fx1 = −m
2 (x1 + c1)

− 3
2 − 2λx1 = 0,

Fx2 = −2λx2 = 0,
...

...

Fxn+1 = − r
2 (xn+1 + c2)

− 3
2 − 2λxn+1 = 0,

Fλ = x2
1 + x2

2 + · · ·+ x2
n+1 − 1 = 0.
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This implies that if X is a local conditional extrema point under the constraints
g(X) = 0, it follows that



















−m
2 (x1 + c1)

− 3
2 − 2λx1 = 0,

x2 = · · · = xn = 0,

− r
2 (xn+1 + c2)

− 3
2 − 2λxn+1 = 0,

x2
1 + x2

n+1 − 1 = 0.

Therefore the vectors a,b and X are linearly dependent and a·b = 0. Set cos θ = a·X
and sin θ = b ·X . Then

d

(

1

ga,c1
,

1

gb,c2

)

= max{|(a ·X + c1)
− 1

2 − (b ·X + c2)
− 1

2 |X ∈ Sn}

= max{|(cos θ + c1)
− 1

2 − (sin θ + c2)
− 1

2 |θ ∈ [0, π]}.
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