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Abstract. Let AOB be a triangle in R3. When we look at this triangle from
various viewpoints, the angle ∠AOB changes its appearance, and its ’visual size’
is not constant. In [3], it is proved that the average visual size of ∠AOB is
equal to the true size of the angle when viewpoints are chosen at random on the
surface of a sphere centered at O. In this paper, a simpler proof of this result is
presented. Furthermore, we extend the result to the case of a solid angle in R4.

Introduction

Let ∠AOB be a fixed angle determined by three points O, A, and B in

the three dimensional Euclidean space R3. When we look at this angle, its

appearance changes according to our viewpoint. The visual angle of ∠AOB
from a viewpoint P is defined as follows:

DEFINITION 1. Let ∠AOB be a fixed angle in R3. For a viewpoint P , let us

denote by

∠PAOB

the dihedral angle of the two faces OAP and OBP of the (possibly degenerate)

tetrahedron POAB. This angle ∠PAOB is called the visual angle of ∠AOB
from the viewpoint P . Its size (measure) is called the visual size of ∠AOB from
P , and denoted by ]PAOB.

For an angle with fixed size, its visual size can vary from 0 to π in radians

depending on the viewpoint.

For a given angle ∠AOB in R3, take a random point P distributed uniformly

on the unit sphere S2 centered at O. Then the visual size ]PAOB is a random

variable, which is called the random visual size of ∠AOB.

THEOREM 1. For any angle ∠AOB, the expected value of the random visual

2000 Mathematics Subject Classification: 51M04, 60D05
Key words and phrases: visual angle, visual solid angle



2 Y. MAEDA

size ]PAOB is equal to the true size of ∠AOB, that is, E(]PAOB) = ]AOB.

Thus, when we observe an angle from several viewpoints, each chosen at

random, the average visual size is approximately equal to the true size. In [3],

We proved this theorem using Santaló’s chord theorem (see, [4]). In this paper,

we will present a simpler proof of Theorem 1 in Section 1.

For a potential extension of Theorem 1, let us consider ’visual solid angle’. For

a tetrahedron OABC in the four dimensional Euclidean space R4, the triangular

cone ∠(O : 4ABC) := ∪X∈4ABC−−→OX is called the solid angle with vertex O.

The area of the intersection of the unit sphere S3 with center O and the solid

angle ∠(O : 4ABC) is called the measure (steradian) of the solid angle ∠(O :

4ABC), and it is denoted by ](O : 4ABC). The visual solid angle of ∠(O :

4ABC) from a viewpoint P is defined as follows:

DEFINITION 2. Let ∠(O : 4ABC) be a fixed solid angle in R4. For a view-

point P , let us denote by

∠P (O : 4ABC)

the orthogonal projection of ∠(O : 4ABC) into the hyperplane through P and

perpendicular to the line PO. This solid angle ∠P (O : 4ABC) is called the
visual solid angle of ∠(O : 4ABC) from the viewpoint P . Its measure is called

the visual measure of ∠(O : 4ABC) from P , and denoted by ]P (O : 4ABC).

For a solid angle with fixed measure, its visual measure can vary from 0 to

2π in steradians depending on the viewpoint as we will see in Section 2.

For a given solid angle ∠(O : 4ABC) in R4, take a random point P dis-

tributed uniformly on the unit sphere S3 centered at O. Then the visual measure

]P (O : 4ABC) is a random variable, which is called the random visual measure

of ∠(O : 4ABC).

THEOREM 2. For any solid angle ∠(O : 4ABC), the expected value of the
random visual measure ]P (O : 4ABC) is equal to the true measure of
∠(O : 4ABC), that is, E(]P (O : 4ABC)) = ](O : 4ABC).

1. Proof of Theorem 1

Let ∠AOB be an angle of size ]AOB, and let P be a random point on the

unit sphere S2 centered at O in R3. We may suppose that A and B lie on

S2. Then the spherical distance dAB between A and B is equal to ]AOB. (We
denote the shortest geodesic connecting A and B, and its length by the same
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notation dAB.) Notice that ]PAOB is equal to the interior angle ]P of the

spherical triangle 4APB.
Let us assume that two points A and B are on the equator of S2. If it

is proved that the expected value E(]PAOB) restricted to any fixed latitude
meridian is equal to ]AOB, the proof of Theorem 1 has completed. Hence, in

the rest of the proof, let us restrict the random point P to any fixed latitude

meridian Lφ := {P ∈ S2 | ]NOP = φ} where N is the north pole of S2.

First, let us prove the case of ]AOB = 2π/n where n is an integer greater

than 1. Divide the equator into n equal parts,

\A1A2 = \A2A3 = · · · = \An−1An = \AnA1 = 2π/n.

Then, for any point P ,

]PA1OA2 + ]PA2OA3 + · · ·+ ]PAn−1OAn + ]PAnOA1 = 2π. (1)

By the rotation with the axis ON and angle 2π/n, the restricted expected value

E|Lφ(]PA2OA3) is equal to E|Lφ(]PA1OA2), and so on. Therefore, taking the
expectation of Equation (1), the linearity of expectation implies that

nE|Lφ(]PA1OA2) = 2π. (2)

Equation (2) shows that E|Lφ(]PAOB) = ]AOB in the case of ]AOB = 2π/n.
In the similar way, we can prove that E|Lφ(]PAOB) = ]AOB in the case

of ]AOB = qπ where q is a rational number less than 1.
Finally, it is clear that the expected value E|Lφ(]PAOB) is a continuous and

monotone increasing function of the size of ∠AOB. Therefore, we can prove that
E|Lφ(]PAOB) = ]AOB in the case of ]AOB = rπ where r is a real number

less than 1. We have completed the proof of Theorem 1.

2. Proof of Theorem 2

Let ∠(O : 4ABC) be a solid angle of measure ](O : 4ABC), and let P be
a random point on the unit sphere S3 centered at O in R4. We may suppose

that A,B and C lie on S3. Since the tangent space TPS
3 is orthogonal to the

line OP , the visual solid angle ∠P (O : 4ABC) is realized in TPS3. Using the
fact that for X ∈ S3, the orthogonal projection of −−→OX is a vector tangent to the

geodesic arc dPX at P , ∠P (O : 4ABC) is the solid angle at P of the spherical

tetrahedron PABC in S3. Note that if 4ABC is a hemisphere (A,B and C lie

on a great circle), then the spherical tetrahedron PABC is a great sphere in S3,

hence, ]P (O : 4ABC) is equal to 2π for any P ∈ S3. In this way, for a solid
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angle with fixed measure, its visual measure can vary from 0 to 2π in steradians

depending on the viewpoint.

For the proof of Theorem 2, we prepare several subsets of S3. Let

S0 : = {(x, y, z, w) ∈ S3 | w = 0 } (great sphere in S3),
S1 : = {(x, y, z, w) ∈ S3 | w = w0} (small sphere in S3),
C0 : = {(x, y, z, w) ∈ S0 | z = 0 } (great circle in S3),
C1 : = {(x, y, z, w) ∈ S1 | z = z0} (small circle in S3).

In the following argument, we assume that three points A, B and C lie on

S0 without loss of generality. Similarly as the proof of Theorem 1, it is enough

to prove that for any w0 ∈ [−1, 1], the restricted expected value of
E(]P (O : 4ABC)) to S1 is equal to the true solid angle ](O : 4ABC).
The proof of Theorem 2 is similar to that of the Girard’s formula in spherical

geometry([1] pp.278-279, [2] p.51).

Now, we will define a sector-like solid angle:

∠(O : A-sec.) : = ∠(O : 4ABC) ∪ ∠(O : 4A∗BC),
∠(O : B-sec.) : = ∠(O : 4ABC) ∪ ∠(O : 4AB∗C),
∠(O : C-sec.) : = ∠(O : 4ABC) ∪ ∠(O : 4ABC∗).

where A∗, B∗ and C∗ are the antipodal points of A,B and C, respectively. (No-
tice that if B0 ∈ dAB ∪ [BA∗, C 0 ∈ dAC ∪ dCA∗, then ∠(O : 4ABC) ∪ ∠(O :

4A∗BC) = ∠(O : 4AB0C 0) ∪ ∠(O : 4A∗B0C 0). Hence ∠(O : A-sec.) depends

only on the “lune” ABA∗CA.)

LEMMA 3. For a given point V on S0, let V
∗ be the antipodal point. Two great

circles on S0 meeting at an angle θ at V bound a solid angle ∠(O : V -sec.).

Then,

E|S1(]P (O : V -sec.)) = ](O : V -sec.).

Proof. Without loss of generality, we can assume that V = (0, 0, 1, 0) and V ∗ =
(0, 0,−1, 0) on S0. Divide the great circle C0 into n equal parts,

\A1A2 = \A2A3 = · · · = \An−1An = \AnA1 = 2π/n.

Then,

](O : 4V A1A2) = ](O : 4V A2A3)
= · · · = ](O : 4V An−1An) = ](O : 4V AnA1) = 2π/n.
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For any point P ∈ S1,

]P (O : 4V A1A2) + ]P (O : 4V A2A3)
+ · · ·+ ]P (O : 4V An−1An) + ]P (O : 4V AnA1) = 2π,

since the visual measure of a hemisphere is equal to 2π. Now, let us restrict the

random point P to the small circle C1 for any fixed z0 ∈ [−1, 1]. By the rotation
with the matrix ⎛⎜⎜⎝

cos 2π/n − sin 2π/n 0 0

sin 2π/n cos 2π/n 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ ,
the restricted expected value E|C1(]P (O : 4V A2A3)) is equal to
E|C1(]P (O : 4V A1A2)), and so on. Therefore,

nE|C1(]P (O : 4V A1A2)) = 2π.

This implies that E|C1(]P (O : 4V A1A2)) = ](O : 4V A1A2) in the case of
]A1V A2 = 2π/n. Similar arguments in the proof of Theorem 1 show that

E|C1(]P (O : 4V A1A2)) = ](O : 4V A1A2) in the case of ]V A1A2 = ]V A2A1
= π/2 and ]A1V A2 ∈ (0,π).

In the next place, the equation E|C1(]P (O : 4V A1A2) = ](O : 4V A1A2)
implies that

E|S1(]P (O : 4V A1A2) = ](O : 4V A1A2).

Finally, since ∠(O : V -sec.) = ∠(O : 4V A1A2) ∪ ∠(O : 4V ∗A1A2),

E|S1(]P (O : V -sec.)) = ](O : V -sec.).

We have completed the proof of Lemma 3.

For a general solid angle ∠(O : 4ABC), we prepare three sector-like solid
angles ∠(O : A-sec.), ∠(O : B-sec.) and ∠(O : C-sec.). Then, using the same

technique of the proof of Girard’s formula in spherical geometry,

](O : 4ABC) = {](O : A-sec.) + ](O : B-sec.) + ](O : C-sec.)− 2π} /2. (3)

In the same way,

]P (O : 4ABC)={]P (O : A-sec.) + ]P (O : B-sec.) + ]P (O : C-sec.)− 2π} /2.
(4)
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Taking the expectation of Equation (4) on S1, Equations (3) and (4) and Lemma

3 imply that

E|S1(]P (O : 4ABC))
= E|S1(]P (O : A-sec.) + ]P (O : B-sec.) + ]P (O : C-sec.)− 2π)/2
= {](O : A-sec.) + ](O : B-sec.) + ](O : C-sec.)− 2π} /2
= ](O : 4ABC).

It is trivial that we can relax the restriction from S1 to the whole space S
3. We

have completed the proof of Theorem 2.

Finally, as a degenerated case, let us consider the case that a three dimen-

sional being such as ourselves observes a solid angle from various viewpoints.

This special case corresponds with the case that our viewpoints P is in S0, and

the tangent space TPS
3 degenerates to two dimensional plane. According as the

three tangent vectors lie on a half plane or not, the visual measure takes 0 or

2π. Since for any w0 ∈ [−1, 1], E|S1(]P (O : 4ABC)) = ](O : 4ABC), so
especially,

E|S0(]P (O : 4ABC)) = ](O : 4ABC). This fact indicates that when we ob-
serve an solid angle from several viewpoints in R3, each chosen at random, the

average visual measure is approximately equal to the true measure of the solid

angle.
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