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1. Introduction

We deal with three series involving Riemann zeta function {(s) in each term.
The literature of such series is quite interesting and work has been done mainly
by Landau [6], Riesz [8], Hardy and Littlewood and Ramaswami in past.
Recently, activities are reported by Verma [12-15], Keshava Menon [4], Chowla
and Hawkins Suryanarayana and Verma and Kaur [16, 17].

Landau [6] established
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while Ramaswami established
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Both the results were re-established by Keshava Menon [4]. We prove
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The third result which we give is a direct proof of Suryanarayana’s result
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using methods of Verma where 7 is the Euler’s constant given by
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2. Proof of (1.3)
We have (Titchmarsh [11])
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Each row of this double series is uniformly convergent and sum by rows is an
analytic function, so by Weierstrass theorem on double series of complex func-
tion (Knopp [5]), summing by columns, this is

@.2) =%§1 hoi (Re s<1).
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The left side as well as the right side of (2.4) is analytic for Re s<1, so con-
tinuing analytically, the required result follows.

3. Proof of (1.4.)

To establish (1.4) we write
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Proceeding as above we easily get that this
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for Res>—1. The restriction on s can be done away with as before, proving
the result.

4. Proof of (1.5)

Suryanarayana has proved using Robbins formula. We proceed
directly as follows.
5 (=1Cr) _ 2 (=1)
=2 r-l tm=1 (r+1)m"
Changing the order of summation of the above absolutely convergent double
series, this
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Using Stirling’s formula (Bruijn [T]), this is
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