ON INCREASING CONVEX FUNCTION OF \(\log \sigma \)

By

SATENDRA KUMAR VAISH

(Recieved March 6, 1981. Revised August 4, 1981)

1. Introduction

Consider a Dirichlet series \(f(s) = \sum_{n=1}^{\infty} a_n \exp(s\lambda_n), \) \((s = \sigma + it, \lambda_n \geq 0, \lambda_n < \lambda_{n+1} \rightarrow \infty \) with \(n \)), which we shall assume to be absolutely convergent everywhere in the complex plane \(\mathbb{C} \) and is bounded in any left strip and hence it defines an entire function. The logarithmic mean of \(f(s) \) is defined as

\[
L(\sigma) = \lim_{T \to \infty} \left\{ \frac{1}{2T} \int_{-T}^{T} \log |f(\sigma + it)| \, dt \right\}.
\]

For any \(\delta > 0 \), we define [2, p. 231] the generalized logarithmic mean of \(f(s) \) as

\[
L_{\delta^*}(\sigma) = \lim_{T \to \infty} \left\{ \frac{\sigma^{-\delta-1}}{2T} \int_{0}^{\sigma} \int_{-T}^{T} x^\delta \log |f(x + it)| \, dx \, dt \right\}.
\]

Since \(\log L_{\delta^*}(\sigma) \) is an increasing convex function of \(\log \sigma \) [2, p. 232], we may represent it in terms of an integral given by

\[
\log L_{\delta^*}(\sigma) = \log L_{\delta^*}(\sigma_0) + \int_{\sigma}^{\sigma_0} \frac{U(x)}{x} \, dx,
\]

where \(U(x) \) is a positive real valued indefinitely increasing function of \(x \).

In this paper we are mainly interested in studying certain growth relations of \(U(\sigma) \) and the generalized logarithmic mean function \(L_{\delta^*}(\sigma) \) relative to each other.

2. Main Results

Theorem 1. For \(m > 0 \), let

\[
I_1 = \int_{\sigma_0}^{\infty} \frac{\log L_{\delta^*}(\sigma)}{\sigma^{m+1}} \, d\sigma,
\]

\[
I_2 = \int_{\sigma_0}^{\infty} \frac{U(\sigma)}{\sigma^{m+1}} \, d\sigma.
\]

Then \(I_1 \) and \(I_2 \) converge or diverge together.

Proof. From (1.2), we have
\[
\int_{\sigma_{0}}^{u} \frac{d\sigma}{\sigma^{m+1}} \int_{\sigma_{0}}^{\sigma} \frac{U(x)}{x} \, dx = \int_{\vee}^{u_{0}} \left\{ \log L_{\delta^{*}}(\sigma) - \log L_{\delta^{*}}(\sigma_{0}) \right\} \frac{d\sigma}{\sigma^{m+1}}
\]

Also,

\[
\int_{\sigma_{0}}^{u} \frac{d\sigma}{\sigma^{m+1}} \int_{\sigma_{0}}^{\sigma} \frac{U(x)}{x} \, dx = \int_{\sigma_{0}}^{u} \frac{\log L_{\delta^{*}}(\sigma)}{\sigma^{m+1}} \, d\sigma \quad \text{and} \quad \frac{\log L_{\delta^{*}}(\sigma)}{\sigma^{m}} \rightarrow 0, \quad \text{as} \quad \sigma \rightarrow \infty.
\]

Hence, from (2.3), we find that \(I_{2} \) is also convergent.

Now, if \(I_{1} \) is convergent, then, from (2.3), we get

\[
(2.4) \quad m \int_{\sigma_{0}}^{u} \frac{\log L_{\delta^{*}}(x)}{x^{m+1}} \, dx + \frac{\log L_{\delta^{*}}(\sigma)}{\sigma^{m}} < k
\]

for some \(k > 0 \). But

\[
\int_{\sigma_{0}}^{u} \frac{\log L_{\delta^{*}}(x)}{x^{m+1}} \, dx \quad \text{and} \quad \int_{\sigma_{0}}^{u} \frac{\log L_{\delta^{*}}(\sigma)}{\sigma^{m}} \left(\frac{1}{\sigma_{0}^{m}} - \frac{1}{\sigma^{m}} \right) > 0,
\]

so, both terms on the left hand side of (2.4) are positive. Hence \(I_{1} \) is also convergent. Thus \(I_{1} \) converges if, and only if, \(I_{2} \) converges. Appealing to Modus
ON INCREASING CONVEX FUNCTION OF $\log \sigma$

Tollendo Tollen's [1, p. 32] the divergence part of this theorem follows from its convergence part.

Theorem 2. Let

$$\lim_{\sigma \to \infty} \sup \frac{\log U(\sigma)}{F(\sigma)} = P, \quad 0 \leq Q \leq P \leq \infty,$$

where $F(\sigma)$ is a logarithmico exponential function of σ, such that, as $\sigma \to \infty$, $F(\sigma) \approx F(\sigma)$ (k is a constant >0) and $\log \log \sigma = o(F(\sigma))$. Then

$$\lim \inf_{\sigma \to \infty} \frac{\sigma F'(\sigma) \log L_k(\sigma)}{U(\sigma)} = 0 \leq Q \leq P \leq \lim \sup_{\sigma \to \infty} \frac{\sigma F'(\sigma) \log L_k(\sigma)}{U(\sigma)}.$$

In order to prove this theorem we need the following lemma:

Lemma 1. Let

$$\phi(x) = A + \int_{x_0}^{x} \frac{g(t)}{t} dt,$$

where $g(x)$ is a positive non-decreasing function of x for $x \geq x_0$ and A is a constant >0. If

$$\lim_{x \to \infty} \sup \frac{\log g(x)}{F(x)} = N \leq M \leq \lim_{x \to \infty} \inf \frac{\log g(x)}{F(x)},$$

Then

$$\lim_{x \to \infty} \inf \frac{g(x)}{x \phi(x)} F(x) \leq N \leq M \leq \lim_{x \to \infty} \sup \frac{g(x)}{x \phi(x)} F'(x).$$

Proof. We have

$$\phi(x) = A + \int_{x_0}^{x} \frac{g(t)}{t} dt \leq g(x) \log x + \text{const.}$$

So,

$$\lim \sup_{x \to \infty} \frac{\log \phi(x)}{F(x)} \leq \lim \sup_{x \to \infty} \left\{ \frac{\log g(x)}{F(x)} \cdot \frac{\log \log x + \text{cost.}}{F(x)} \right\} = M.$$

Now,

$$\phi(2x) \geq \int_{x}^{2x} \frac{g(t)}{t} dt \geq g(x) \log 2.$$

Therefore,

$$\lim \sup_{x \to \infty} \frac{\log \phi(2x)}{F(2x)} \geq \lim \sup_{x \to \infty} \left\{ \frac{\log g(x)}{F(x)} \cdot \frac{F(x)}{F(2x)} + \frac{\log 2}{F(2x)} \right\} = M.$$
Hence
\[
\lim_{x \to \infty} \sup_{\infty} \frac{\log \phi(x)}{F(x)} = M.
\]
Similarly,
\[
\lim_{x \to \infty} \inf_{\infty} \frac{\log \phi(x)}{F(x)} = N.
\]
Now, from (2.6), we get, for \(x \geq x_0\),
\[
\phi'(x) = \frac{g(x)}{x \phi(x)}.
\]
Integrating in the Lebesgue sense between \(x_0\) and \(x\), we find
\[
(2.8) \quad \log \phi(x) = \int_{x_0}^{x} \frac{g(t)}{t \phi(t)} dt + \text{const}.
\]
Let,
\[
\lim_{x \to \infty} \sup_{\infty} \frac{g(x)}{x \phi(x) F'(x)} = C, \quad 0 \leq C \leq \infty.
\]
We first suppose that \(0 < D, C < \infty\). Then, for any \(\epsilon > 0\) and sufficiently large \(x\),
\[
(D - \epsilon) F'(x) < \frac{g(x)}{x \phi(x)} < (C + \epsilon) F'(x).
\]
Integrating in the Lebesgue sense, we get
\[
(D - \epsilon)(1 - \alpha(1)) \leq \frac{\log \phi(x)}{F(x)} \leq (C + \epsilon)(1 - \alpha(1)),
\]
or,
\[
(2.9) \quad D \leq N \leq M \leq C,
\]
which also holds, when \(D = 0\) or \(C = \infty\). If \(D = \infty\), then so is \(C\) and
\[
\lim_{x \to \infty} (g(x)/x \phi(x) F'(x)) = \infty.
\]
So, taking an arbitrary large real number in place of \(D - \epsilon\) and proceeding as above, we obtain \(M = N = \infty\). Similarly, if \(C = 0\), it can be shown that \(M = N = 0\). Hence, for \(0 \leq D \leq C \leq \infty\), (2.9) implies (2.7).

Proof of theorem 2. Replacing \(\phi(\sigma)\) by \(\log L_{\mu}^*(\sigma)\) and \(g(\sigma)\) by \(U(\sigma)\) in (2.7), we get Theorem 2.

Theorem 3. Let
\[
\lim_{\sigma \to \infty} \sup_{\sigma \in [h, H]} \frac{\lambda_{p+1} L_{\mu}^*(\sigma)}{L_{\mu}^*} = H, \quad 0 \leq h \leq H \leq \infty.
\]
ON INCREASING CONVEX FUNCTION OF $\log \sigma$

Then

\[\lim_{\sigma \to \infty} \inf \frac{(l_{1}L_{\delta^{*}}(\sigma))(l_{2}L_{\delta^{*}}(\sigma)) \cdots (l_{p}L_{\delta^{*}}(\sigma))}{U(\sigma)(l_{1}\sigma)(l_{2}\sigma) \cdots (l_{q-1}\sigma)} \leq \frac{1}{H} \leq \frac{1}{h} \leq \lim_{\sigma \to \infty} \sup \frac{(l_{1}L_{\delta^{*}}(\sigma))(l_{2}L_{\delta^{*}}(\sigma)) \cdots (l_{p}L_{\delta^{*}}(\sigma))}{U(\sigma)(l_{1}\sigma)(l_{2}\sigma) \cdots (l_{q-1}\sigma)}, \]

where $l_{k}\sigma$ denotes k-th iterate of $\log \sigma$.

The proof of this theorem is based on the following lemma:

Lemma 2. Let

\[G(x) = A + \int_{x_{0}}^{x} \frac{\Psi(t)}{t} dt, \]

where $\Psi(x)$ is a positive and non-decreasing function of x for $x \geq x_{0}$. If

\[\lim_{x \to \infty} \sup \frac{l_{p}G(x)}{l_{q}x} = S, \quad 0 \leq S \leq T \leq \infty, \]

Then

\[\lim_{x \to \infty} \inf \frac{G(x)(l_{1}G(x))(l_{2}G(x)) \cdots (l_{p-1}G(x))}{\Psi(x)(l_{1}x)(l_{2}x) \cdots (l_{q-1}x)} \leq \frac{1}{T} \leq \frac{1}{S} \leq \lim_{x \to \infty} \sup \frac{G(x)(l_{1}G(x))(l_{2}G(x)) \cdots (l_{p-1}G(x))}{\Psi(x)(l_{1}x)(l_{2}x) \cdots (l_{q-1}x)}. \]

Proof. Let

\[\lim_{x \to \infty} \sup \frac{G(x)(l_{1}G(x))(l_{2}G(x)) \cdots (l_{p-1}G(x))}{\Psi(x)(l_{1}x)(l_{2}x) \cdots (l_{q-1}x)} = C, \quad 0 \leq C \leq \infty, \]

and suppose that $d > 0$. Then, for any $\varepsilon > 0$ and $x \geq x_{0}$, we have

\[G(x)(l_{1}G(x))(l_{2}G(x)) \cdots (l_{p-1}G(x)) > (d - \varepsilon)\Psi(x)(l_{1}x)(l_{2}x) \cdots (l_{q-1}x). \]

Differentiating (2.11), we get

\[G'(x) = \frac{\Psi(x)}{x}. \]

Therefore,

\[\frac{G'(x)}{G(x)(l_{1}G(x))(l_{2}G(x)) \cdots (l_{p-1}G(x))} < \frac{\Psi(x)}{(d - \varepsilon)\Psi(x)(l_{1}x)(l_{2}x) \cdots (l_{q-1}x)}. \]

Integrating (2.13) in the Lebesgue sense, between x_{0} and x, we obtain

\[l_{p}G(x) = \int_{x_{0}}^{x} \frac{G'(t)}{G(t)(l_{1}G(t))(l_{2}G(t)) \cdots (l_{p-1}G(t))} dt < \frac{l_{p}x}{d - \varepsilon}. \]
or,
\[
\frac{\log L_{\delta^{*}}(x)}{l_{x}x} < \frac{1}{d-\epsilon}.
\]
So,
\[
(2.14)
\]
\[
d \leq \frac{1}{T},
\]
which also holds when \(d=0\). If \(d=\infty\), the above argument with an arbitrary large real number instead of \(d-\epsilon\) gives \(T=0\). Hence, for \(0 \leq d \leq \infty\), (2.14) gives the left hand side of (2.12). Similarly, the right hand side follows.

Proof of theorem 3. Replacing \(G(\sigma)\) and \(\Psi(\sigma)\) by \(\log L_{\delta^{*}}(\sigma)\) and \(U(\sigma)\), respectively, we get the required result.

Theorem 4. If \(F(\sigma)\) is a logarithmic exponential function of \(\sigma\), such that, \(F(k\sigma) \approx F(\sigma)\) and \(\log L_{\delta^{*}}(\sigma) \approx F(\sigma)\). Then,
\[
\lim_{\sigma \to \infty} \frac{\log L_{\delta^{*}}(\sigma)}{U(\sigma)} = \infty.
\]

Proof. For any \(\epsilon > 0\) and \(\sigma \geq \sigma_{0}\),
\[
\frac{F(\sigma)}{1-\epsilon} > \frac{F(2\sigma)}{1-\epsilon} > \log L_{\delta^{*}}(2\sigma) = \log L_{\delta^{*}}(\sigma) + \int_{\sigma}^{2\sigma} \frac{U(x)}{x} dx \geq \log L_{\delta^{*}}(\sigma) + U(\sigma) \log 2,
\]
and
\[
\frac{F(\sigma)}{1+\epsilon} < \log L_{\delta^{*}}(\sigma).
\]
So,
\[
\{(1-\epsilon)^{-1} - (1+\epsilon)^{-1}\}F(\sigma) > U(\sigma) \log 2.
\]
Thus,
\[
\lim_{\sigma \to \infty} \frac{U(\sigma)}{F(\sigma)} = 0.
\]
Since, \(F(\sigma) \approx \log L_{\delta^{*}}(\sigma)\). Hence
\[
\lim_{\sigma \to \infty} \frac{\log L_{\delta^{*}}(\sigma)}{U(\sigma)} = \infty.
\]
Thus the proof of **Theorem 4** follows.

Acknowledgements

My thanks are due to Dr. G. S. Srivastava for his helpful suggestions and
the Council of Scientific and Industrial Research, New Delhi, India for the award of a Post Doctoral Fellowship.

I am also grateful to the referee for giving some useful suggestions in the original manuscript.

References

Department Mathematics
University of Roorkee
Roorkee-247672 (U. P.)
India