NOTE ON AN ALMOST SURE INVARIANCE PRINCIPLE FOR SOME EMPIRICAL PROCESSES

By
KEN-ICHI YOSHIIHARA

(Received June 20, 1979)

1. Summary. Let \{\xi_i\} be a strictly stationary sequence of random variables which are distributed uniformly over the interval [0, 1] and satisfy the strong mixing (s.m.) condition

\[\alpha(n) = \sup_{A \in \mathcal{F}_a, B \in \mathcal{F}_b} |P(A \cap B) - P(A)P(B)| \downarrow 0 \]

as \(n \to \infty \), where \(\mathcal{F}_\alpha \) is the \(\sigma \)-algebra generated by \(\xi_a, \cdot \cdot \cdot, \xi_b (\alpha \leq b) \).

Recently, Berkes and Philipp (1977) proved an almost sure invariance principle for some empirical processes by which a functional law of the iterated logarithm for the functions of s.m. sequences, a two-dimensional functional law of the iterated logarithm, etc., are easily obtained. In this note, we shall prove that Theorem 1 in Berkes and Philipp [1] remains true under the less restrictive s.m. condition.

2. The main result. Let \(F_N(s) (0 \leq s \leq 1) \) be the empirical distribution function defined by \(\xi_1, \cdot \cdot \cdot, \xi_N \).

Let

\[R(s, t) = [t] (F_{\lfloor t \rfloor}(s) - s), \quad 0 \leq s \leq 1, \quad t \geq 0 \]

where \([t]\) denotes the largest integer not exceeding \(t \). Write

\[g_i(\alpha) = I_{(s, t)}(\alpha) - t \]

where \(I_{(s, t)}(\cdot) \) denotes the indicator function of the interval \([s, t)\) and for fixed \(s \) and \(t \) with \(0 \leq s < t \leq 1 \), put

\[x_n(s, t) = g_i(\xi_n) - g_s(\xi_n) \]

Then, we can rewrite \(R(s, t) \) as

\[R(s, t) = \sum_{j=1}^{[t]} x_j(0, s) \]

Consider the covariance function
(2.5) \(\Gamma(s, t) = E \sum_{n=1}^{\infty} E g_{\xi_1} \xi_1 \sum_{n=1}^{\infty} E g_{\xi_1} \xi_1 + \sum_{n=1}^{\infty} E g_{\xi_1} \xi_1 \) \(0 \leq s, t \leq 1 \).

(It is known that under the conditions of Theorem (below) the two series in (2.5) converge absolutely for \(0 \leq s, t \leq 1 \).

Let

(2.6) \(\sigma^2(s, t) = \Gamma(s, s) + \Gamma(t, t) - 2 \Gamma(s, t) \).

It is clear that if \(\Gamma(s, t) \) is positive definite, then \(\sigma^2(s, t) > 0 \) for \(0 \leq s < t \leq 1 \). Further, let \(\{K(s, t), 0 \leq s \leq 1, t \geq 0\} \) be a Kiefer process, i.e., a separable Gaussian process \(K(s, t) \) on \([0, 1] \times [0, \infty)\) such that \(K(0, t) = K(1, t) = K(s, 0) \) for all \(0 \leq s \leq 1, t \geq 0 \), (2.7) \(EK(s, t) = 0 \) and

(2.8) \(EK(s, t)K(s', t') = \min(t, t') \Gamma(s, s') \).

We prove the following

Theorem. Let \(\{\xi_i\} \) be random variables defined above. Suppose that \(\alpha(n) = O(n^{-3/a}) \) for some \(0 < a < 1 \). Suppose that \(\Gamma(s, s') \) is positive definite. Then, without changing the distribution of the empirical process \(R(s, t) \) of \(\{\xi_n\} \) we can redefine \(R \) on a richer probability space on which there exists a Kiefer process with covariance \(\min(t, t') \Gamma(s, s') \) such that

(2.9) \(\sup_{0 \leq s \leq 1} \sup_{0 \leq t \leq T} |R(s, t) - K(s, t)| = O(T^{1/2}(\log T)^{-\lambda}) \) \(a.s. \)

for some \(\lambda > 0 \).

3. **Proof.** To prove Theorem, we need some lemmas. In what follows, we denote by the letter \(C \), with or without subscript, various absolute constants.

Lemma 1. Let \(X \) be a random variable with finite first moment. Let \(\varphi(t) \) be the characteristic function of \(X \). Further, let \(Z \) be the standardized normal random variable. If there exist two numbers \(L \) and \(T(>1) \) such that for all \(t(|t| \leq T) \)

(3.1) \(|\varphi(t) - e^{-t^2/2}| \leq L \),

then for all \(M(>1) \)

(3.2) \(\sup_u |P(X < u) - \Phi(u)| \leq C \left[M^{-1}[E|X| + E|Z|] + L \log MT + \frac{1}{T} \right] \).

where

\(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \).
Proof. Let $M(>1)$ be an arbitrary number. Since $E|X|<\infty$, so for all t ($|t|\leq M^{-1}$)

$$|\varphi(t)-e^{-t^{2}/2}| \leq E|e^{itX-Z)\ell}-1| \leq C|t|(E|X|+E|Z|)$$

Hence, we have

$$\int_{|t|\leq M^{-1}} \frac{\varphi(t)-e^{-t^{2}/2}}{t} dt = \int_{|t|\leq M^{-1}} \frac{\varphi(t)-e^{-t^{2}/2}}{t} dt \leq C \left[(E|X|+E|Z|) \int_{|t|\leq M^{-1}} \frac{1}{t} dt + L \int_{M^{-1}<|t|\leq T} \frac{1}{t} dt \right]$$

Now, (3.2) follows from Theorem 2 in [2, Chap. 5, §1], which completes the proof.

We put $l=t-s$ for any pair (s, t) ($0 \leq s < t \leq 1$).

Lemma 2. Suppose that the conditions of Theorem are satisfied. Then there exist positive numbers γ, ρ, μ and C_0 such that $1/2<\rho<\gamma$ and

$$P(\sum_{j=H+1}^{H+N} x_j(s, t) \geq 3A l^{(\gamma-\rho)/2}(2N \log \log N)^{1/2})$$

$$\leq C \{ \exp \left(-A^2 C_0^{-2} l^{\rho} \log \log N \right) + A^{-2} l^{\rho} N^{-1/4} \}$$

uniformly for all pairs (s, t) ($l \geq N^{-1/2-\mu}$) and for all $H\geq 0$, $A>0$ as $N \to \infty$.

Proof. Firstly, we note that if $a(n)=O(n^{-3/a})$ then we can easily find positive numbers C_0 and $\gamma\left(\geq 5/9\right)$ such that for s, t ($0 \leq s, t \leq 1$) and for all n sufficiently large

$$\sigma_n^2(s, t) = \frac{1}{n} E\left|\sum_{j=1}^{n} x_j(s, t)\right|^2 \leq C_0^2 l^{\gamma\gamma}$$

since $|x_0(s, t)| \leq 1$ and $E|x_0(s, t)| \leq C l$.

Secondly, as (ξ_i) is strictly stationary, we shall prove Lemma 2 in the case $H=0$.

Let

$$\gamma = \min\left(\frac{5}{9}, \frac{7-3a}{8}\right)$$

and choose ρ so that $1/2<\rho<\gamma$. Let N be a sufficiently large number. Let $p=[N^{1/2} \log N]^{-1/2}$ and $k=[N/2p]$. Choose a number μ so that

$$0<\mu<(1-a)/(3+a)$$

For brevity, we put

$$\chi_N = (2 \log \log N)^{1/2}$$

and $a = a_\rho(s, t) (>0)$.

For any pair \((s, t)\) such that \(l \geqq N^{-1/8-\mu}\), put
\[
y_j = p^{-1/2} \sigma^{-1} \sum_{j=1}^{p} x_{2tj-1} x_{p+j}(s, t) \quad (j=1, \cdots, k)
\]
and
\[
y_{k+1}^* = p^{-1/2} \sum_{i=2kp+1}^{N} x_i(s, t) .
\]

As \(\{x_i(s, t)\}\) is strictly stationary, so
\[
(3.9) \quad \text{LHS of } (3.4) \leqq 2P(|\sum_{j=1}^{k} y_j| \geqq Al^{t}) \sigma k^{1/2} \chi_{N})
\]
\[
+ P(|y_{k+1}^*| \geqq Al^{t}k^{1/2} \chi_{N}) = 2I_1 + I_2 , \quad \text{(say)} .
\]

It follows from (3.5) that
\[
(3.10) \quad I_2 \leqq A^{-2} l^{-1/2} k^{-1/2} \chi_{N}^{-1} E[y_{k+1}^*]
\]
\[
\leqq CA^{-2} l^{-1/2} k^{-1/2} \chi_{N}^{-1} p^{-1}(N-2kp) \leqq CA^{-2} N^{-1/4} l^{r} .
\]

Now, we proceed to estimate \(I_1\). From (3.7), (3.9) and Lemma 1 in Yoshihara [3] we have
\[
E|y_1|^4 \leqq C \sigma^{-4} \{l^{4/3} + l^{1-\alpha} p^{-1}(\log P)\} \leqq C \sigma^{-4} l^{2\gamma} ,
\]
and so from Schwartz's inequality and the fact \(E|y_1|^6 = 1\) we have
\[
(3.11) \quad E|y_1|^2 \leqq (E|y_1|^4)^{1/3} (E|y_1|^6)^{1/3} \leqq C \sigma^{-2} l^{r} ,
\]
Hence, by Lemma 1, [2, Chap. 5, §2] and (3.11) we have that for all \(t (|t| \leqq (1/4)T_N)\)
\[
|E(\exp(ik^{-1/2} t \sum_{j=1}^{k} y_j)) - e^{-t/2}| \leqq C(k\alpha(p) + T_N^{-1})
\]
where
\[
T_N = k^{1/2} (E|y_1|^2)^{1/2} (E|y_1|^6)^{-1} \geqq Ck^{1/3} \sigma^2 l^{-\gamma} .
\]
Since for all \(N\) sufficiently large
\[
E|k^{-1/2} \sum_{j=1}^{k} y_j| \leqq k^{1/2} E|y_1| \leqq k^{1/2} (E|y_1|^2)^{1/2} \leqq k^{1/3}
\]
so using Lemma 1 (with \(M = N^3\)), we have
\[
\sup_z |P(k^{-1/2} \sum_{j=1}^{k} y_j < z) - \Phi(z)| \leqq CN^{-1/4} \sigma^{-2} l^{r} .
\]

Hence, from the non-uniform estimate of the central limit theorem and (3.5)
Almost Sure Invariance Principle

(3.12) \[I_1 \leq C \left[1 - \Phi(Al^{1/2}/2^{-1}cN) \right] + \frac{N^{-1/4}l^{-2}l''}{1 + A^2l^{-2}/2^2} \]
\[\leq C \left[\exp \left(-A^2C_0^{-2}l^{\rho} \log \log N \right) + A^{-2}N^{-1/4}l'' \right]. \]
Combining (3.9), (3.10) and (3.12), we have (3.4) and the proof is completed.

The following two lemmas correspond Lemmas 5.1 and 5.2 in Berkes and Philipp [1].

Lemma 3. If (3.4) holds, then as \(k \to \infty \)

(3.13) \[P(\max_{1 \leq j \leq r} \sup_{s_j \leq t \leq s_{j+1}} |R(s, t) - R(s_j, t_k)| \geq t_k^{1/2} (\log t_k)^{-4\epsilon}) \leq C \exp (-k^{4\epsilon}) \]
where \(r=r_k=[\log k/\log 4], \ t_k=[\exp(k^{1-\epsilon})] \) and \(\epsilon=(\gamma-\rho)/16 \).

Proof. We write for \(0 \leq s < s' \leq 1 \) and integers \(P(\geq 0), \ Q(\geq 1) \)

\[F(P, Q, s, s')=| \sum_{j=P+1}^{P+Q} x_j(s, s') | . \]
Put \(m=|(1/2+\mu) \log t_k/\log 2| \) and write for \(s_j \leq s < s_{j+1} \)

\[s=s_j + \sum_{\nu=r+1}^{m} \beta_\nu 2^{-\nu} + \theta 2^{-m} \]
where \(\beta_\nu=0,1 \) and \(0 \leq \theta \leq 1 \). We define the following events:

\[E_k(\nu, a) = \{ F(0, t_k, a, (a+1)2^{-\nu}) \geq 2C_02^{-\nu}t_k^{1/2} \chi_{\ell_k} \} \]
\[E_k = \bigcup_{r<\nu \leq m+1} \bigcup_{0 \leq a < 2^\nu} E_k(\nu, a) . \]
Then, applying the same method in the proof of Lemma 5.1 in [1] and using Lemma 2 we have

\[F(0, t_k, s_j, s) \leq Ct_k^{1/2}(\log t_k)^{-1-(\gamma-\rho)/4} \quad \text{a.s.} \]
and the proof is completed.

Lemma 4. If (3.4) holds, then as \(k \to \infty \)

\[P(\max_{t_k \leq t \leq t_{k+1}} \sup_{t \geq t_k} |R(s, t) - R(s, t_k)| \geq t_k^{1/2} (\log t_k)^{-4\epsilon}) \leq Ck^{-2} . \]

Proof. Put \(p=|(1-\mu) \log t_k/\log 4| \) and \(q=[\log (t_{k+1}-t_k)/\log 2] \). We write each integer \(t \) \((t_k \leq t \leq t_{k+1}) \) in the form

\[t=t_k + \sum_{0 \leq \nu \leq q} \tau_\nu 2^\nu = t_k + \sum_{p \leq \nu \leq q} \tau_\nu 2^\nu + \theta t_k^{1-\mu/2} \]
where \(\tau_\nu=0,1 \) and \(0 \leq \theta \leq 1 \). Also, we write \(s(0 \leq s \leq 1) \) in the form

\[s= \sum_{\nu=1}^{\infty} \sigma_\nu 2^{-\nu} = \sum_{\nu=m} a_\nu 2^{-\nu} + \theta 2^{-m} . \]
Further, let

\[H_k(\nu, a, j, h) = \{ F(t_k + h2^{j+1}, 2^l, a, a2^{-\nu}, (a+1)2^{-\nu}) \geq 2C_02^{-l\nu/2}(q-j)^{-\nu/2}2^{\nu/2} \} \]

\[H_k = \bigcup_{p<j} \bigcup_{0<\nu \leq t_1+j/0} \bigcup_{a>0} \bigcup_{0<h'q-j} H_k(\nu, a, j, h). \]

Then, applying the same method in the proof of Lemma 5.2 in [1] and using Lemma 2, we have the lemma.

From Lemmas 3 and 4, we have the following lemma.

Lemma 5. If the conditions of Theorem are satisfied, then

\[
(3.14) \quad \max_{t_k \leq t \leq t_{k+1}} \max_{s_j \leq s} |R(s, t) - R(s_j, t_k)| \leq Ct_k^{1/2}(\log t_k)^{-1} \quad a.s.
\]

where \(t_k \) and \(r_k \) are the ones defined in Lemma 3.

Proof of Theorem. Since under the conditions of Theorem the corresponding result to Proposition 3.1 in [1] is proved by the method used there, so using the Berkes and Philipp method in [1] and Lemma 5, we have the theorem.

References

Department of Mathematics
Faculty of Engineering
Yokohama National University
Tokiwadai, Hodogaya,
Yokohama, Japan