GENERAL POSITIONING IN A MAPPING CYLINDER

By

H. W. BERKOWITZ and PRABIR ROY

(Received April 4, 1977)

For the Basic definitions of P.L. topology the reader is referred to Hudson [4]. Some other definitions follow.

E^n denotes n-dimensional Euclidean space. If $a, b \in E^n$, $[a, b]$ denotes the closed line in E^n between a and b.

If K is a complex and L is a subcomplex of K, then $\text{St}_K(L) = \bigcup \{A \in K: A \cap |L| \neq \emptyset\}$, where $|L| = \bigcup \{x: x \in A \in L\}$. $A < B$ for two simplices A and B means A is a face of B.

If P is a polyhedron, Q a subpolyhedron of P, and T a triangulation of P in which Q is triangulated, then $T|Q = \{A \in T: A \subset Q\}$.

All manifolds in this paper are compact combinatorial manifolds. If M is a manifold, the interior of M is denoted $\text{Int}(M)$ or $\text{Int}M$.

Let M be an m-manifold, L a triangulation of M. For each vertex $v_i \in L$, $\text{St}_L(v_i)$ is a combinatorial m-ball; let $\theta_i: \text{St}_L(v_i) \to B^m$ be a P.L. homeomorphism from $\text{St}_L(v_i)$ onto the standard m-simplex. If K is a complex and $g: |K| \to \text{Int}(M)$, where g is a P.L. mapping, then g is semi-simplicial iff for each $A \in K$, there exists a vertex v_i of L such that $g(\text{St}_K(A)) \subset \text{Int}(\text{St}_L(v_i))$ and $\theta_i g|\text{St}_K(A)$ is a linear mapping of $\text{St}_K(A)$ into $\text{Int}(B^m)$.

Let $g: K \to E^m$ be a semi-simplicial mapping of a complex K into E^m, i.e., for $A \in K$, $g|A$ is linear. g is in general position if for any collection of vertices $\{w_0, \ldots, w_r\}$, $r \leq m$, of K, $\{g(w_0), \ldots, g(w_r)\}$ spans an r-dimensional hyperplane in E_m.

If g is in general position and $A_1, A_2 \in K$, then $\dim g(\text{Int}(A_1) \cap \text{Int}(A_2)) \leq \dim A_1 + \dim A_2 - m$.

Let $\{v_0, \ldots, v_r, \ldots, v_t\} \subset E^r$. Let the hyperplane spanned by $\{v_0, \ldots, v_r\}$ be of dimension p, $p \leq r$. Let $\{w_0, \ldots, w_p\}$ be $p+1$ linearly independent points in $\{v_0, \ldots, v_r\}$. Then $\{v_0, \ldots, v_r, \ldots, v_t\}$ is in general position with respect to (g.p.w.r.t.) $\{v_0, \ldots, v_r\}$,
If \(\{w_0, \cdots, w_r, v_{i+1}, \cdots, v_t\} \) is in general position in \(E' \). "With respect to" is abbreviated by "w.r.t."

If \(D \) is a hyperplane in \(E' \), \(\{v_1, \cdots, v_i\} \subset \, E' \), and \(\{w_0, \cdots, w_r\} \) is any linearly independent set of points spanning \(D \), then \(\{v_1, \cdots, v_i, D\} \) is in g.p.w.r.t. \(D \), if \(\{v_1, \cdots, v_i, w_0, \cdots, w_r\} \) is in general position in \(E' \).

If \(\{w_1, \cdots, w_s\} \subset \, E' \), its convex closure is denoted by \(\langle w_1, \cdots, w_s \rangle \). If \(A_1, \cdots, A_t \) are convex subsets of \(E' \), the convex closure of \(\{w_1, \cdots, w_s\} \cup A_1 \cup \cdots \cup A_t \) is denoted by \(\langle w_1, \cdots, w_s, A_1, \cdots, A_t \rangle \).

If \(P, Q \) are polyhedra and \(f: P \to Q \) is a P.L. mapping, then a point \(x \in P \) such that \(f^{-1}f(x) \neq x \) is a singular point of \(f \); the closure of the set of singular points of \(f \) is the singular set of \(f \) and is denoted \(S_f \).

Let \(K, L \) be triangulations of \(P, Q \) such that \(f: K \to L \) is simplicial. Let \(L_b \) be the barycentric subdivision of \(L \) and \(K_f \) a subdivision of \(K \) such that \(K_f \) is isomorphic to \(K_b \), and \(f: K_f \to L_b \) is simplicial. The mapping cylinder of \(f, C_f \) is formed as follows. For \(b \) a vertex in \(K_f \), let \(B(b) \) be the simplex of \(K \) such that \(b \in \text{Int}(B(b)) \); similarly if \(a \) is a vertex in \(L_b \), let \(A(a) \) be the simplex of \(L_b \) such that \(a \in \text{Int}(A(a)) \). The vertices of \(C_f \) are those of \(L_b \) plus those of \(K_f \). \(\{b_0, b_1, \cdots, b_i, a_{i+1}, \cdots, a_j\} \) is a simplex of \(C_f \) iff \(B(b_0)>B(b_1)>\cdots>B(b_i) \) and \(f(B(b_i)) \supseteq A(a_{i+1})>\cdots>A(a_j) \). By an obvious identification \(L_b, K_f \subset C_f \), so that \(Q, P \subset \{C_f \} \).

Define the onto simplicial mapping \(p_f: C_f \to L_b \) by \(p_f(b)=f(b) \) for \(b \) a vertex of \(K_f \), and \(p_f(a)=a \) for \(a \) a vertex of \(L_b \).

Given any triangulation \(T \) of \(\subset C_f \), there exists a refinement \(T' \) of \(T \) such that \(p_f: T' \to T \) is simplicial. \(T' \) is called a cylindrical subdivision of \(T \); \(p_f(\subset C_f) \) is the base of \(C_f \). For \(x \in \text{base of} \, C_f \), call \(p_f^{-1}(x) \) the fibre over \(x \). If \(A \in T' \), then \(p_f^{-1}(x) \cap A \) is the fibre over \(x \) in \(A \).

Let \(II \) be a P.L. mapping of \(a \) polyhedron \(F \) onto a polyhedron \(G \) such that for each \(x \in G \), \(II^{-1}(x) \) is collapsible. The triple \(\{F, G, II\} \) is called a semi-forest. If for each \(x \in G \), diameter \(II^{-1}(x)<\epsilon \), then \(\{F, G, II\} \) is called an \(\epsilon \)-semi-forest. These notions are due to Homma [3].

2. General Positioning in a Mapping Cylinder. Consider the P.L. mapping \(f: M \to \text{Int}(N) \) of a combinatorial closed \(m \)-manifold into the interior of a combinatorial \(n \)-manifold, where \(m \leq 3n/4-5/4 \), and \(n \geq 4 \). Assume \(M \) has a triangulation \(L \) and \(N \) has a triangulation \(K \), and that \(f \) is in general position and is semi-simplicial with respect to these two triangulations. Let \(P=S_f \), the singular set of \(f \), and \(Q=f(P) \). Let \(|C_f| \) be the mapping cylinder associated with \(f: P \to Q \).

The mapping \(g \). There exists a semi-simplicial mapping \(g: C_f \to M \), where \(C_f \)
is a cylindrical triangulation, satisfying:

(i) if $A, B \in C_f$ with $g(A) \cap g(B) \neq \emptyset$, then there exists a vertex $v \in L$ with $g(A) \cup g(B) \subseteq \text{Int}(St_L(v))$;

(ii) g is in general position;

(iii) $g(x) = x$, for each $x \in P$.

It is easy to show that:

Lemma 1. dim $C_f \leq n/2 - 2a + 1$, where $a \geq 5/4$.

Corollary 1.1. dim $S_g \leq n/4 - 3a + 2$, where $a \geq 5/4$.

Lemma 2. Let $A \cup B$ be a complex consisting of two principal simplices A and B. Let A_1 be a 1-dimensional face of A, with dim $(A_1 \cap B) \leq 0$. Let $\phi: [A \cup B] \rightarrow E^n$ be a mapping which is linear on A and B, and is in general position, where dim $A \leq m$, dim $B \leq m - 1$. Then given $\epsilon > 0$, there exists a simplicial mapping $\phi': A \cup B \rightarrow E^n$, in general position, where $d(\phi, \phi') < \epsilon$, such that, if $x, y \in E^n$ and the line segment between x and y, $[x, y]$, is parallel to $\phi'(A_1)$, then not both x and y lie in $\phi'(B)$.

The proof is straightforward.

By **Lemma 2**, g can be approximated by a semi-simplicial mapping $g' : C_f \rightarrow M$, satisfying (i), (ii), (iii), and (iv'), where

(iv') if $A, B \in C_f$, where B is a 1-dimensional simplex, $p_f(B) = \text{point}$, and dim $(A \cap B) \leq 0$, then any line parallel to $g'(B)$ intersects $g'(A)$ in at most one point.

Note that in order to construct g', dim C_f must be $\leq m - 1$; this follows from Lemma 1.

Assume g satisfies (iv').

Lemma 3. $g : |C_f| \rightarrow M$ has the following two properties, the sum of which are called (iv).

(iv$_a$) For any $A, B \in C_f$, if $p_f(A \cap B)$ is a homeomorphism and if there is $x \in A$ such that $g(x) \in (g(A) \cap g(B)) - g(A \cap B)$ then there is no $y \in A$, $y \neq x$, with $g(y) \in (g(A) \cap g(B)) - g(A \cap B)$ and $p_f(x) = p_f(y)$.

(iv$_b$) For any $A, B \in C_f$, if there exists a 1-dimensional face X of $A \cap B$ with $p_f(X) = \text{point}$, and if $x, y \in A - (A \cap B)$; $x', y' \in B - (A \cap B)$; with $g(x) = g(x')$, $g(y) = g(y')$, and $p_f(x) = p_f(y)$ then $p_f(x') = p_f(y')$.

Proof. (iv$_a$) follows from (iv'). To prove (iv$_b$) note that if $A \in C_f$ and $A_1 < A$, dim $(A_1) = 1$, with $p_f(A_1) = \text{point}$ in base of C_f, then for any line segment $e \subseteq A$,
where e is parallel to A_1, $p_f(e)=$ point in base of C_f. Now $[x, y]$ is parallel to X in A, so $[g(x), g(y)]$ is parallel to $g(X)$. Since $[g(x), g(y)] = [g(x'), g(y')]$, $[g(x'), g(y')]$ is also parallel to $g(X)$, hence $[x', y']$ is parallel to X. Therefore $p_f(x') = p_f(y')$.

Thus if $A, B \in C_f$, and a fibre, $g(e)$, in $g(A)$ meets $g(B)$, then $g(e) \cap g(B)$ is contained in a fibre in $g(B)$ and consists of a point or a closed interval.

If $H \subset E^n$, then denote the hyperplane spanned by H, by $D(H)$.

Lemma 4. Let $G: |K| \rightarrow E^n$ be a semi-simplicial mapping, in general position, from a complex K into E^n, where $m=3n/4-a$; dim $K \leq n/2-2a+1$, where $a \geq 5/4$. Then G can be approximated by a semi-simplicial mapping $G': |K| \rightarrow E^n$, which is in general position and is at most 2-to-1.

Proof. It is well known that the vertices of the image can be moved slightly and the resulting map will still be in general position. Let $A, B, C \in K$. dim $(G(A) \cap G(B)) - G(A \cap B) \leq n/4-3a+1$. Thus dim $D(G(A) \cap G(B)) \leq n/4-3a+1$. There are 2 cases.

(I) $C \cap (A \cup B) = \phi$. Then the image of C can be adjusted without moving the vertices of $A \cup B$. dim $D(G(A) \cap G(B)) + \dim C - m < -1$.

(II) $C \cap (A \cup B) \neq \phi$. It can be assumed that all the vertices of C are in $A \cup B$.

Let $C_A = C \cap A$, $C_B = C \cap B$. Assume dim $C_A \geq$ dim C_B, then dim $C_B \leq (n/2-2a+1)/2$. Thus dim $D(G(A) \cap G(B)) \leq n/4-3a+1$. Therefore G' can be constructed. Now assume g satisfies (i), (ii), (iii), (iv), and is 2-to-1.

Notation for the General Positioning in C_f. Let S_g be the singular set of $g: |C_f| \rightarrow M$. Let C'_f be a complex identical to C_f; let $id: |C'_f| \rightarrow |C_f|$ be the identity map. Let $x' = id^{-1}(x)$, for $x \in C_f$; and $A' = id^{-1}(A)$, for $A \subset |C_f|$. Let R_a be a polyhedron homeomorphic to S_g; let $r: R_a \rightarrow S_g$ be the homeomorphism. Let $\phi: R_a \rightarrow S_g$ be the homeomorphism satisfying $\phi(r^{-1}(x)) = x'$. For x in base of $C_f(C_f')$, denote the fibre over x by $F_x(F'_x)$.

Let $H = \{A \cap S_g; A \in C_f\}$. Let T_o be a triangulation of S_g which defines H, is extendible to a subdivision of C_f, and such that $g|T_o$ is simplicial into some triangulation of M. Let T'_o and RT_o be the corresponding triangulations of S'_g and R_g.

Because g is at most 2-to-1 and $g|T_o$ is simplicial into some triangulation of M, for $A \in T_0$, either no other points of S_g are mapped by g into $g(\text{Int } A)$, or there exists a unique $A' \in T_o$ such that $g(A) = g(A')$.

Let T_1 be the barycentric subdivision of T_o, and T_2 the barycentric subdivision of T_1. Let T'_o, T'_o, and RT_1, RT_2 be the corresponding subdivisions of S'_o and R_g.

For K a complex, denote by K^i the i-th skeleton of K.

Let $Q_q = \{x \in |C_f|: g^{-1}g(x) \neq x\}$, $L_q = S_q - Q_q$. Let $p = \text{Max} \{i: L_q \cap \text{Int} (A) \neq \emptyset, A \in C_f^i\}$, $q = \text{Max} \{i: Q_q \cap \text{Int} (A) \neq \emptyset, A \in C_f^i\}$.

Lemma 5. $q > p$.

Proof. If $A \in C_f$ and $\text{Int} A \cap L_q \neq \emptyset$, then there exists $A_1, A_2 \in C_f$ with $A \subset A_1 \cap A_2$ and $g(A_1) \cap g(A_2) \neq g(A_1 \cap A_2)$ iff dim $A_1 + \dim A_2 - m - \dim (A_1 \cap A_2) \geq 1$.

In this case $A_1 \cap A_2 \subset L_q$, and dim $(A_1 \cap A_2) \leq \dim A_1 + \dim A_2 - m - 1 \leq 2(n/2 - 2a + 1)$.

If $A_1 \in C_f$ and $A_1 \cap Q_q \neq \emptyset$, then there exists $A_2 \in C_f$ such that dim $A_1 + \dim A_2 - m \geq 0$, or $\dim A_1 \geq m - \dim A_2$. Now dim $A_1 \geq m - (n/2 - 2a + 1) = (3n/4 - a) - (n/2 - 2a + 1) = n/4 - a + 1$, or $q \geq n/4 - a - 1$. Thus $q - p \geq (n/4 + a - 1) - (n/4 - 3a + 1) = 4a - 2 > 0$ since $a > 5/4$.

Notation. Let $S_q^i = S_q \cap |C_f^i|$.

Lemma 6. Let A be a simplex, $G: A \rightarrow E^r$ a linear homeomorphism, $A' < A$. Let K_b be the barycentric subdivision of A. Let $G': |K_b| \rightarrow E^r$ such that

(i) $B \in K_b$ implies $G'|B$ is linear
(ii) $G'|A' = G|A'$.

Let $A \geq A_0 > A_1 > \cdots > A_t > A'$ with v_i the barycenter of A_i. The G' is a linear homomorphism on $\langle v_0, v_1, \ldots, v_t \rangle \ast A'$.

The proof is straightforward.

Lemma 7. Let $A \in C_f^i$, $B \in T_1$ or T_2 such that $B \cap \text{Int} (A) \neq \emptyset$. Then there exists $A_1 < A_2 < \cdots < A_t = A$ such that $B \cap \text{Int} A_j \neq \emptyset$; and if $A' < A$ with $A' \neq A_j$ for $j = 1, \ldots, t$, then $B \cap \text{Int} A' = \emptyset$.

The proof follows from the way in which a barycentric subdivision divides a complex.

Corollary 7.1. Let $A \in C_f^i$, $B \in T_1$ or T_2 such that $B \cap \text{Int} A \neq \emptyset$. Let $j < i$, then B meets at most one j-dimensional face of A.

Let $A \subset |C_f|$. The shadow of A in $|C_f|$ is the set $\{x \in |C_f|: \mathbf{p}_f(x) \in \mathbf{p}_f(A)\}$, and is denoted by Shad (A). If $A \subset C_f^i$, Shad (A) is similarly defined in C_f^i.

For each vertex $v_j \in T_2$, where $v_j \in \text{Int} (A_j)$, $A_j \subset C_f^i$, there exists a closed ball U_j centered at v_j, $U_j \subset \text{Int} (A_j)$, and this collection of U_j's satisfies: if $F: S_f^i \rightarrow |C_f^i|$ such that $F(v_j) \in U_j$, and F is the linear extension of this vertex map, then there exists an ambient isotopy $H_t: |C_f^i| \rightarrow |C_f^i|$, such that $H_0(x) = F(x)$ for all $x \in S_f^i$, and $H_t(x) = x$ for all $x \in |C_f^i|$. Furthermore $H_t(A) = A$ for all $t \in [0, 1]$ and $A \subset C_f^i$. The notation for v_j and U_j will be used in the following.
Proposition 8. There exists $\phi': R^i_\epsilon \rightarrow |C'_f|$, a P.L. homeomorphism of R^i_ϵ into $|C'_f|$, ambient isotopic to ϕ in C'_f by an isotopy which moves no point more than ϵ, for any given $\epsilon > 0$, and satisfying:

1. $\phi'|R^i_\epsilon = \phi|R^i_\epsilon$ for $0 \leq i \leq q-1$.
2. For each vertex $v_j \in R^i_\epsilon$, $\phi'(v_j) \in U_j$.
3. If $B \in RT^i_\epsilon - RT^{i-1}_\epsilon$, and $C \in RT^i_\epsilon$, if v_1, \ldots, v_i are the vertices of B in $RT^i_\epsilon - RT^{i-1}_\epsilon$, then $\phi(v_j)$, $\phi(v_i)$, $\phi(B)$ is in g.p.w.r.t. $\langle \text{Shad}(\phi(C)) \cap A, \phi(B') \rangle$.

The proof of this follows a lengthy construction.

If $B, C \in T^i_\epsilon$ and v_1, \ldots, v_i are the vertices of B which are not in C, and $v_i \in S^i_\epsilon$ for $1 \leq i \leq t$, then v_1, \ldots, v_i are the free vertices of B w.r.t. C.

Construction of the ϕ_j. For $0 \leq i \leq q-1$, define $\phi: R^i_\epsilon \rightarrow |C'_f|$ by $\phi_i = \phi|R^i_\epsilon$. For $q \leq i \leq \dim C_f$, ϕ_i will be constructed inductively. The final ϕ_i will be ϕ'.

For $q \leq i \leq \dim C_f$, ϕ_i will satisfy:

1. $\phi_i|S^i_\epsilon = \phi_{i-1}$.
2. For each vertex $v_j \in RT^i_\epsilon$, $\phi_i(v_j) \in U_j$.
3. If $B \in RT^i_\epsilon - RT^{i-1}_\epsilon$, and $C \in RT^i_\epsilon$, if v_1, \ldots, v_i are the vertices of B in $RT^i_\epsilon - RT^{i-1}_\epsilon$, such that $v_1, \ldots, v_i \cap C = \phi$, if $A \in C'_f$ such that $\phi(B) \subset A$, and if B' is the face of B opposite $\langle v_1, \ldots, v_i \rangle$, then $\phi_i(v_i) \in \langle \text{Shad}(\phi_i(C)) \cap A, \phi_i(B') \rangle$ is in g.p.w.r.t. $\langle \text{Shad}(\phi_i(C)) \cap A, \phi_i(B') \rangle$.

The main construction. For each i, $q \leq i \leq \dim C_f$, we prove:

Proposition 8. Given $\phi_j: R^i_\epsilon \rightarrow |C'_f|$, a P.L. homeomorphism, ambient isotopic to $\phi|R^i_\epsilon$ in $|C'_f|$, and satisfying (1), (2), and (3), where $0 \leq j \leq i-1$, and given $\epsilon > 0$, such that $d(\phi_j, \phi|R^i_\epsilon) < \epsilon$, then there exists $\phi_i: R^i_\epsilon \rightarrow |C'_f|$ satisfying (1), (2), (3), and $d(\phi_i, \phi|R^i_\epsilon) < \epsilon$.

Proof. Let $\{v_k\}_k$ be the vertices of $RT^i_\epsilon - RT^{i-1}_\epsilon$. Let $W_k = U_k - N(k, \epsilon)$ where $N(k, \epsilon)$ is the closure of the ϵ-ball centered at $\phi(v_k)$ for $1 \leq k \leq J$.

Consider the set of ordered pairs of simplices $\{(B_1, C_1), \ldots, B_R, C_R)\}$, where $B_k \in RT^i_\epsilon - RT^{i-1}_\epsilon$, $C_k \in RT^i_\epsilon$, and where B_k has free vertices w.r.t. C_k which are contained in $RT^i_\epsilon - RT^{i-1}_\epsilon$. For each such pair (B_ϵ, C_ϵ) $r_\epsilon: R^i_\epsilon \rightarrow |C'_f|$ is constructed which satisfies:

1. r_ϵ is simplicial on RT^i_ϵ.
2. For each vertex $v \in RT^i_\epsilon$, $r_\epsilon(v) = r_{\epsilon-1}(v)$, except when v is a free vertex of B_ϵ w.r.t. C_ϵ in $RT^i_\epsilon - RT^{i-1}_\epsilon$. For such a free vertex, v_ϵ, $r_\epsilon(v_\epsilon) \in B_\epsilon$. Define r_ϵ to be equal to ϕ_{i-1} on $R^i_\epsilon - R^{i-1}_\epsilon$, and to be equal to ϕ on the vertices of $RT^i_\epsilon - RT^{i-1}_\epsilon$.

(3) If \(v_1, \ldots, v_t \) are the free vertices of \(B_k \) w.r.t. \(C_k \) in \(RT^{i_2}_k - RT_k^{i_1} \) and \(\phi(B_k) \subset A \) where \(A \in (C_{j})^i \), then \(\{r_s(v_1), \ldots, r_s(v_t)\} \) is in g.p.w.r.t. \(\langle \phi(B) \cap A, r_s(A') \rangle \) where \(B' \) is the face of opposite \(\langle v_1, \ldots, v_t \rangle \), and \(1 \leq k \leq s \).

Let \(\phi = r_r \).

The construction of \(r_1 \) follows, the construction of \(r_j \), where \(2 \leq j \leq s \) is similar.

Let \(v_1, \ldots, v_t \) be the free vertices of \(B_1 \) w.r.t. \(C_1 \) which are in \(RT^{i_2}_1 - RT_k^{i_1} \). Let \(\phi(C_1) \subset A \) where \(A \in (C_{j})^i \); thus \(\{\phi(v_1), \ldots, \phi(v_t)\} \subset \text{Int } A \). Let \(B' \) be the face of \(B_1 \) opposite \(\langle v_1, \ldots, v_t \rangle \).

Let \(P_0 = \langle r_s(B'), \phi(B) \cap A \rangle \). \(P_0 \) determines a hyperplane in \(A \), denoted by \(D(P_0) \).

Note \(\dim P_0 < \dim B_1 + \dim (\phi(B) \cap A) + 1 \). In order to show that \(\dim B_1 + \dim (\phi(B) \cap A) - \dim A \leq -1 \) note that \(\dim A = n/2 + 2a + 1 - b \), where \(a \geq 5/4, \ b \geq 0 \). \(\dim B_1 \leq \dim (S_{r} \cap A) \leq \dim A + \dim C_j^m \leq n/4 - 3a + 2 - b \). Thus \(\dim (\phi(B) \cap A) \leq n/4 - 3a + 3 - b \), and \(\dim A_1 + \dim (\phi(B) \cap A) - \dim A \leq -4a + 4 - b \leq -4a + 4 \leq -1 \).

Thus \(D(P_0) \) does not fill up \(W_i \), so there exists \(y_1 \in W_1 - D(P_0) \). Let \(P_1 = \langle y_1, P_0 \rangle \). If \(t > 1 \), there exists \(y_2 \in W_2 - D(P_1) \). By induction \(y_k \in W_k - D(P_{k-1}) \) and \(P_k = \langle y_k, P_{k-1} \rangle \) can be obtained for \(2 \leq k \leq t \).

Now \{\(y_1, \ldots, y_t, P_0 \} \) is in g.p.w.r.t. \(P_0 \). Let \(r_1(v_k) = y_k \) for \(1 \leq k \leq t \); \(r_i(v) = r_1(v) \) for each \(v \) in \(RT^{i_2}_t \) for \(v \neq v_k, 1 \leq k \leq t \). Extend \(r_i \) linearly to all of \(R^{i_2}_t \).

The following corollaries now follow.

Corollary 8.1. If \(q \leq i \leq \dim C_f \), and \(B, C \in RT^{i_2}_i \), \(\phi'(B) \cap A \neq \phi \) with \(A \in (C_{j})^i \); if \(v_1, \ldots, v_t \) are the free vertices of \(B \) w.r.t. \(C \), then \(x \in \text{Int } (B) \) implies that \(\phi'(x) \in \phi(\phi'(C)) \).

Corollary 8.2. If \(B \in RT^{i_2}_k \) and \(C \in RT^{i_1}_k - RT^{i_2}_k \) where \(q \leq i < j \leq \dim C_j \); if \(A \in (C_{j})^i \) with \(\phi'(B) \subset A \); if \(v_1, \ldots, v_t \) are the free vertices of \(B \) w.r.t. \(C \), then \(x \in \text{Int } (B) \) implies that \(\phi'(x) \in \phi(\phi'(C)) \).

Corollary 8.3. If \(x \in \text{Int } (A) \), \(y \in \text{Int } (B) \), where \(B, C \in RT_2^i - RT_2^{-1} \); and there exists a free vertex of \(B \) w.r.t. \(C \), then there is no \(z \in \text{base of } C_f \) such that \(\phi'(x) \) and \(\phi'(y) \in F_z \).

Since \(\phi' \) is ambient isotopic to \(\phi \) in \(|C_f| \), there is an ambient isotopy \(H_t: |C_f| \rightarrow |C_f| \) such that \(H_t(x) = x \) for all \(x \in |C_f| \), \(H_t(\phi'(x)) = \phi(x) \) for all \(x \in R_p \), and \(H_t|A \) is a P.L. homeomorphism of \(A \) onto \(A \) for each \(t \in [0, 1] \) and \(A \in C_f \).

Define \(h: |C_f| \rightarrow |C_f| \) by \(h(x) = idH_t(x) \).
Theorem 9. Let $z \in \text{base of } C_f$. Suppose $gh(F_z) \cap gh(|C_f^\prime| - F_z) \neq \phi$, then there exists a unique $z^\prime \in \text{base of } C_f$, $z^\prime \neq z$, such that $gh(F_z) \cap gh(F_{z^\prime}) \neq \phi$. Furthermore $gh(F_z) \cap gh(F_{z^\prime})$ is connected.

The proof of Theorem 9 follows from Corollary 8.3.

Let $B^\prime = \text{base of } C_f$. For $z \in B^\prime$, define $B^\prime(z) = \{z^\prime \in B^\prime : gh(F_z) \cap gh(F_{z^\prime}) \neq \phi\}$. $B^\prime(z)$ contains at most 2 points. Let $G^\prime = \{z \in B^\prime\}$. Let $G = B^\prime\mid G'$, i.e. G is the decomposition space formed by identifying z with z^\prime in B^\prime if $B^\prime(z) = B^\prime(z^\prime)$. Let $\Theta : B^\prime \rightarrow G$ be defined by $\Theta(z) = B^\prime(z)$. A subset U of G is open if $\Theta^{-1}(U)$ is open in B^\prime. G is a polyhedron and Θ is a P.L. map. Let $\delta_1 = \text{Max}\{\text{diameter } g\Phi y(z) : x \in \text{base of } C_f\}$.

Theorem 10. Given $\delta > 0$, there exists a $(2\delta_1 + \delta)$ semi-forest $\Gamma = \{F, G, \pi\}$ and a P.L. mapping Θ of Q onto G satisfying:

a) $P \subset F \subset \text{Int} (M)$

b) $\Theta f = \pi|P$

c) $\dim S_{\Theta} < \dim Q$

d) $\dim \pi^{-1}(x) \leq \text{Max dim } f^{-1}(y) + 1$, for any $x \in G$.

Proof. Given $\delta > 0$, there exists $\epsilon > 0$ such that if ϕ' is constructed as in the proof of Proposition 8 so that $d(\phi, \phi') < \epsilon$, then $d(gh(x), gid(x)) < \delta$ for any $x \in |C_f^\prime|$. Let K^\prime be a triangulation of $|C_f^\prime|$ which extends T^\prime. Let $K(P)^\prime$ denote the subcomplex of K' which triangulates id$^{-1}g^{-1}(P)$.

h can be chosen so that there is an ambient isotopy $H_t : M \rightarrow M$, such that $H_t(x) = x$ for $x \in M$, $H_t(gh(x)) = gid(x)$ for $x \in |K(P)^\prime|$, and $d(x, H_t(x)) < \delta/8$ for any $t \in [0, 1]$, $x \in M$. Thus diameter $(gh(F_z)) < \delta_1 + \delta/4$ for any z in base of C_f'; and diameter $(H_t(gh(F_z))) < \delta_1 + \delta/2$. If $H_t(gh(F_z)) \cap H_t(gh(F_{z^\prime})) \neq \phi$ for z, z^\prime in base of C_f', then diameter $(H_t(gh(F_z)) \cup H_t(gh(F_{z^\prime}))) < 2\delta_1 + \delta$.

Let $F = H_t gh(|C_f^\prime|)$. Identify Q with B^\prime, thus $\Theta : Q \rightarrow G$. For $x \in F, x \in H_t gh(F_z)$ for some $x \in B^\prime$. Let $\pi(x) = B^\prime(x) \in G$. Since $x \in H_t gh(F_{z^\prime})$ implies $B^\prime(x) = B^\prime(z^\prime)$, π is well-defined.

For $x \in G$, $\pi^{-1}(x)$ can be shown to be collapsible by Theorem 9. It is clear that $\dim \pi^{-1}(x) \leq \text{Max dim } f^{-1}(y) + 1$, for any $x \in G$.

To show that $\dim S_{\Theta} < \dim Q$, note that $n \geq 4$ and: $\dim Q = \dim S_f \leq n/2 - 2a$, where $a \geq 5/4$. Thus $\dim Q = n/2 - 2a - b$ where $b \geq 0$. $\dim S_\Theta \leq \dim S_f \leq 2(\dim C_f) - m = n/4 - 3a - 2b + 2$. Therefore $\dim Q - \dim S_{\Theta} > 0$, and the theorem follows.
References

State University of New York,
College at New Paltz, New Paltz, N.Y.,
12561
State University of New York
at Binghamton, Binghamton, N.Y. 13901