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Abstract 

 
 

Cable-supported bridge is one of the most popular structural forms adopted for long-span bridges. 

The applications of cable-supported bridge are increasing with the growing number of long-span 

bridges due to their aesthetic view and wide navigation facility. The decks of the cable-supported 

bridges are hanged only by the cables to span over long distance without any intermediate support. 

As a result, flexibility becomes an inherent property of the cable-supported bridge decks increasing 

the importance of aerodynamic behavior. The shape of the bridge deck plays an important role and 

aerodynamic performance can be improved by shaping the bridge deck appropriately without 

requiring any post-construction structural or aerodynamic counter-measures. There are a number of 

important shaping parameters for conventional bridge decks. Their influences on aerodynamics as 

well as response should be well understood for shaping the bridge deck efficiently and facilitating 

the bridge deck design procedure.  

 

          In this context, the present study examined the influence of various important shaping 

parameters on aerodynamic responses of single box bridge deck by employing unsteady RANS 

simulation. Detailed verification and validation studies were carried out for various bluff bodies and 

bridge sections to check the performance of two-dimensional unsteady RANS. The main parametric 

study was devoted for single-box bridge deck with and without fairing due to their frequent 

application for long-span bridges.  

 

          A large number of practical bridge decks were surveyed for obtaining general idea about the 

shaping parameters and their range in practical bridges. Important shaping parameters such as top 

plate slope (ζT), bottom plate slope (ζB), side ratio (R) and width ratio (W) were considered as a main 

parameters of interest. Further, practical issues like, Reynolds number (ReB) effects, influence of 

handrail type, effects of curb and inspection rail on aerodynamic response and flow fields were also 

researched.  

 

          Both for bridge deck with and without fairing, the influence of various shaping parameters on 

static force coefficients were investigated. It was found that the response altered significantly due to 

variation of shaping parameters and showed minimal value for particular combination of shaping 

parameters. By exploiting pressure, velocity and vorticity distribution, obtained steady-state 



 
 
Abstract                                                                                                                                                            Page | iii 

 

 
 

responses were explained. Some important and common flow features were also identified and their 

roles on steady-state responses were discussed.  

 

          Based on steady-state responses and flow field analysis, some specific bride decks were 

chosen as a representative case for dynamic analysis. For those specific shapes, flutter derivatives 

were calculated and unsteady pressure characteristics were explored to evaluate their aeroelastic 

characteristics and reveal the roles of previously identified important flow features on flutter 

instability, respectively. Finally, conclusions were drawn regarding flow mechanism due to variation 

of shaping parameters and recommendations were provided for shaping the single-box bridge deck 

with and without fairing.  
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Volume of the neighboring cell  
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Upstream distance of the computational domain  
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Greek Symbols 
 

 

α Torsional displacement 

 

 

αo 

 

Amplitude of torsional oscillation  

β 

 

Curb angle and constant in turbulence model  

Δt 

 

Time step  

Δx 

 

Smallest cell size   

  Diffusivity 

 

 

ε 

 

Heaving displacement  

εo 

 

Amplitude of heaving oscillation  
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Dynamic viscosity  

μT 

 

Turbulent eddy viscosity  

  

 

Kinematic viscosity  

t
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Kinematic eddy viscosity  

ω 

 

Circular frequency and turbulent specific dissipation rate  
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Circular frequency of the torsional oscillation  

ωε 
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Density  
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ζB 

 

Bottom plate slope of the bridge deck  

ζT 

 

Top plate slope of the bridge deck  

υLε Phase lag from maximum angle of attack to the lift force in heaving 

mode 

 

 

υLα Phase lag from maximum angle of attack to the lift force in torsional 

mode 

 

 

υMε Phase lag from maximum angle of attack to the moment in heaving 

mode 

 

 

υMα Phase lag from maximum angle of attack to the moment in torsional 

mode 

 

 

δα 

 

Structural damping ratio to critical for torsional mode  

δε 

 

Structural damping ratio to critical for heaving mode  



 

 

 

 

 

Chapter 1 

 

Introduction 

 
 

Bridge is one of the greatest inventions of human being that connected people across the world 

separated by streams, lakes, rivers, seas and valleys. With the passage of time this invention has 

gone through various modifications and developments to fulfill the ever growing needs of human. 

Fig.1.1 makes a comparison between one of the old style and modern bridges. Fabricus Bridge is an 

arch bridge made of tuff and built in 62 BC with a span length of 24.5 m (O‟connor 1993 and Tylor 

2002), on the other hand, Akashi-Kaikyo Bridge is a suspension bridge made of steel and built in 

1998 with a span length of 1991 m (Cooper 1998). Conspicuously changes can be noticed both in 

terms of length, structural form and material. 

 

          Human being had always fascination towards bridging over wide to wider lands apart 

increasing the span length of the bridge. To achieve this goal, they required new and improved 

structural forms of bridge system and material having enough strength and less production cost. 

With the improvement of cable-supported bridge concept at the beginning of 19th century (Dennie 

and Hall 1809 and Myerscough 2013) and improvement of steel production technology in the mid of 

19th century (Swank 1892), the concept of long-span cable-supported bridge emerges at the end of 

19th century.   

 

          Cable-supported bridges require less number of deep piers or supports inside the bride saving 

cost and providing wide navigation for the water transportations. Soon it became a popular structural 

form of bridge system for the long-span bridges. In the beginning of 20th century based on the 

conventional deflection theory a number of cable-supported bridges were built both in the form of 

cable-stayed and suspension bridges (Matsumoto et al. 2007 and Myerscough 2013).              
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          That approach had a significant flaw that appears through the collapse of famous Tacoma 

Narrows Bridge in 1940 (Ammann et al. 1941). That bridge was one of the major suspension bridges 

of that time spanning 853 m and made of steel. In the design process no dynamic behavior of 

structures and acting natural forces were taken into consideration due to lack of knowledge. The 

bridge collapsed due to dynamic action of wind, only at a wind speed of 19 m/s, known as torsional 

flutter (Farquharson 1949, Billah and Scanlan 1991 and Matsumoto et al. 2003). Fig.1.2 shows the 

vibration mode and the collapse of the bridge. Since then, the importance of wind-resistant design of 

long-span cable-supported bridges has been realized and dedicated countless number of researches 

on wind actions on bridges, introducing a new branch of scientific research named as a bridge 

aerodynamics. 

 

          Long-span cable-supported bridges are low damped flexible structures possess low natural 

frequencies varies from 0.05 to 0.5 Hz ( Holmes 2004 and Fujino and Siringoringo 2013) depending 

on the span length, stiffness and the mass of the bridge system. This makes it more susceptible to 

wind forces rather than earthquake as the dominant frequency of wind and earthquake forces lies 

between 0.005 to 1 Hz and 0.1 to 10 Hz, respectively (Holmes 2004). When the wind blows around 

the bridge deck, it interacts with the bridge deck and excites it. As a result, the deck exhibits various 

aeroelastic phenomena. In Fig.1.3 the general aerodynamic response of a long-span cable-supported 

bridge is shown. At various levels of wind speed the response changes from static to dynamic and 

limited to divergent type vibration. 

 

          At low wind speed range, the deck exhibits limited amplitude vortex shedding vibration. 

When the blowing wind leaves the deck at the trailing edge, it creates alternating shedding vortices 

with a certain frequency (fv). The shedding frequency, fv, depends on the shape of the bridge deck 

and wind velocity (U). Under certain circumstances, the frequency of the vortices (fv) matches with 

the natural frequency (fn) of certain mode of vibration and the deck vibrates either in torsional or 

bending mode. As almost all the constructed bridges experience vortex shedding wind speed ranges 

during their design life time, to ensure serviceability criteria special attention is paid for vortex 

shedding excitation in the design stage.  

 

          The static aerodynamic forces such as drag (CD), Lift (CL) and moment (CM) govern the 

aerodynamic response at medium to high wind speed range. The deck should stand without much 

translation, deformation and rotation under smooth and turbulent flows. At high wind speed range 

the long-span cable-supported brides are susceptible to flutter instability. This is a divergent type 

 

 
Tylor 2002 

 
                                                       http://www.yokogawa-bridge.co.jp/    

a) Fabricius Bridge (Buil in 62 BC) (b) Akashi-Kaikyo Bridge (Built in 1998) 

 

Figure 1.1: A comparison of old style and modern bridges  

http://www.yokogawa-bridge.co.jp/
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                                                                           https://mubi.com/lists/tales-of-the-wind  

(a) Torsional oscillation 

 
                 http://twmarsh.hubpages.com/ 

(b) Collapse 

 

Figure 1.2: Oscillation and collapse of old Tacoma Narrows Bridge, November 1940 

 

 

 
 

Figure 1.3: General aerodynamic response of long-span cable-supported bridge  

 

 

vibration appears both in the form of classical flutter and stall flutter. At high wind speed, when the 

vertical and torsional modes frequencies come closer causing coupling among them occurs classical 

flutter, while stall flutter occurs in single mode of vibration associated with flow separation. In both 

of the forms of flutter negative aerodynamic damping also plays an important role (Chen et al. 

2000). 

 

          With this advancement of knowledge, improvement of wind tunnel facilities and aerodynamic 

analysis methodology, engineers now can dream to construct a bridge spanning over more than 

couple of kilometers remaining the deck hang in the air such as 3.3 km span Messina Straits 

(Brancaleoni and Diana 1993), 3.5 km span Sunda Strait (Wangsadinata 1997) and 5 km span 

Gibraltar Strait (Lin and Chow 1991), yet there are lots to reveal and clarify about aerodynamics of 

long-span bridge decks to ensure safe and sustainable bridge system.  

  

          Still engineers face difficulties to make the bridge deck stable against wind and a number of 

long-span bridge decks suffered from aeroelastic problem after construction. For example, Deer Isle 

Bridge (Kumarasena 1989), Kessock Bridge (Owen 1996), Rio-Niterio Bridge (Battista 2000), Great 

Belt Bridge (Frandsen 2001), Osteroy Bridge (Strommen and Hjorth-Hansen. 2001), Severn Bridge 
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(Macdonald et al. 2002), Tokyo bay Bridge (Fujino and Yoshida 2002), Wye Bridge (Holmes 2004), 

and Shin-minato Bridge (Tran et al. 2014) bridges exhibited vortex induced vibration. Fig.1.4 

illustrates the vortex induced vibration observed in Great Belt Bridge. Further, engineers struggle in 

the design process to reduce the steady state forces (Diana et al. 1999) and to increase the flutter 

wind speeds of the deck (Tanaka 1999, Xian and Ge 2007, Wang 2009) to satisfy the maximum 

wind speed at the construction site. 

 

          A number of countermeasures have already been developed to improve the steady state 

response and to control the aeroelastic vibration. Structural countermeasure and aerodynamic 

countermeasure are two common approaches. In case of structural countermeasure, the vibration is 

suppressed rather than eliminating the cause of vibration by means of increasing the damping. 

Basically, tuned mass damper is used as a structural measure in long-span bridges (Wardlaw 1992, 

Honda et al. 1993, Gu et al. 1994 and Strommen and and Hjorth-Hansen. 2001). However, they 

demand extra construction and maintenance cost.  

 

          In aerodynamic countermeasure, the cause of vibration is eliminated by changing the flow 

field around the bridge deck. Normally, the shape of the bridge deck is modified or additional 

member such as flaps, spoiler, deflector, wind nose, guide vanes and spoiler are attached to the deck 

(Wardlaw 1992, Simiu and Miyata 2006 and Fujino et al. 2012). Nevertheless, each of these 

additional devices has effectiveness for specific type of aeroelastic problem (Fujino and Siringoringo 

2013). Furthermore, like structural countermeasures these devices also incur extra construction and 

maintenance cost. From engineering point of view it is always given the highest priority to the 

solutions having less cost and simplicity in construction. Therefore, if it is possible to improve 

aerodynamic response and eliminate aeroelastic problem only by shaping the bridge deck properly, it 

would be the most desired solution for many future long-span bridges. 

 

          The gravity and the importance of the context motivated us to explore the insights of the 

aerodynamics of long-span bridge decks. The focus was to reveal and understand how the variation 

of bridge deck shapes affects the aerodynamic response and the flow field to maximize the 

improvement of the aerodynamics that can be achieved by shaping the long-span bridge deck 

appropriately.     

 

 

 

1.1    Problem Statement 
 

 

Until now, various bridge deck shapes have been utilized for long-span cable-supported bridges. To 

narrow down the option, we surveyed 81 cable-supported long-span bridge decks span length varies 

from 200 to 1991 m to find the most common and widely used deck shape. Detailed survey results 

are provided in chapter 2. We found that single box streamlined deck is the most common form of 

deck for long-span bridges. Fig.1.5 depicts an example of single box streamlined deck shape used in 

Sutong Bridge. The streamlined shape is achieved by means of the inclined bottom plate of the 

girder and addition of a small fairing at the side of the deck to reduce the along wind load and 

strength of the vortices at the trailing edge (Teres-Nicoli et al. 2007 and Teres-Nicoli and Kopp 

2009).  

 

          Much research has already been dedicated regarding this kind of shape. Yamaguchi et al. 

(1986) compared among venting and fairing to check their performance against vortex-induced  
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Figure 1.4: Vortex induced vibration observed in Great Belt Bridge, May 1998 (Larsen et al. 2000). 

Both the camera and the marked vehicle was in stationary  

 

 

 
                                                                                                                                     You et al. 2007 

 

Figure 1.5: An example of streamlined bridge deck utilized in Sutong Bridge 

 

 

vibration and flutter instability. They found that shape of the fairing influences the aerodynamic 

response and recommended further investigation. Then, Nagao et al. (1993), Kawatani et al. (1993), 

Sakai et al. (1993), Larsen (1993), De Marinda and Bartoli (2001) and Sukamta et al. (2008) 

investigated the influence of fairing on aerodynamic response. They also found that fairing has 

effectiveness to improve mean force coefficients, vortex shedding behavior and flutter wind speed. 

However, discussion was limited to its effectiveness only as no specific shape was found to be 

effective for general consideration.  

 

          Then, Larsen and wall (2012) conducted wind tunnel investigation on a streamlined deck 

having girder bottom plate slope of 25º, 20º and 14.8º. They recommended a bottom plate slope of 

14.8º to eliminate vortex-induced vibration. He found that at bottom plate slope of 14.8º, the flow 

separation at the trailing edge stops and the vortex forms away from the body. As a result the deck 

doesn‟t exhibit vortex-induced vibration. Before that, Wang et al. (2009) also conducted detailed 

wind tunnel investigation to select the deck shape for Nanjing 4th Bridge having various bottom plate 

slopes to improve the flutter wind speed. They found that the flutter wind speed increases 

dramatically for a bottom plate slope of less than 16º.  

 

          However, for this kind of shape the bottom plate slope is not the only influential parameter. 

There are some other parameters, they may also influence the aerodynamic behavior and affect the 

effectiveness of bottom plate slope. Fig.1.6 shows the detailed of streamlined shape. As can be seen 

that not only the bottom plate slope (ζB), the shape of the deck also depends on the top plate 

slope(ζT), the top deck width (B), the depth of the deck (D) and the bottom deck width (b). And, it is 

already known from past researches that aerodynamic response of a bridge deck is highly sensitive 
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to the variation of the deck shape (Nagao et al. 1993, Kawatani et al. 1993, Sakai et al. 1993, Larsen 

1993, De Marinda and Bartoli 2001 and Sukamta et al. 2008).     

 

          As a result, the variation of the top plate slope (ζT), side ratio (R) and deck width ratio 

(W=b/B) will also affect the aerodynamic response and depending on that the mechanism of bottom 

plate slope (ζB) may also alter. For example, if the width of bottom horizontal plate (b) changes the 

shape of the deck alters significantly as shown in Fig. 1.7 (a) and (b). We surveyed some of the 

famous streamlined deck of long-span cable-supported bridges in details. In chapter 2 detailed 

survey results are provided. We found that the width ratio (W) varies a lot from 1 to 0.5. Hence, their 

influence on aerodynamic behavior is obvious. Not only width ratio (W), other parameters such as 

bottom plate slope (ζB), top plate slope (ζT) and side ratio (R) also varies pretty well. Interestingly, 

all those bridge deck shapes were selected based on rigorous wind tunnel test and all those shapes 

are supposed to possess improved aerodynamic behavior. This implies that bottom plate slope (ζB) is 

not only influential parameter and the optimum value of bottom plate slope (ζB) may depend on 

other parameters too.  

 

          Further, the influence of Reynolds Number (ReB) is another important and widely discussed 

topic that should be taken into consideration, as practical bridges experience Reynolds number (ReB) 

of more than millions. Even though, it is quite impossible to reveal the complete influence of 

Reynolds number, yet at least the trend in results should be known that how the bridge deck response 

as well as the flow field alter at increasing Reynolds number (ReB). This effectiveness of shaping 

parameters and the flow mechanism may also depend on Reynolds number (ReB).  

 

          Even so, in past works very few of these parameters were considered systematically in a single 

research. Investigations were carried out individually with different conditions. There was difference 

in terms of side ratio, Reynolds number, types of handrail and the way parameter was altered. For 

example, for bottom plate slope (ζB), Wang et al. (2009) changed that by changing the nose location,  

where Larsen and Wall (2012) changed by changing the bottom deck leading edge toe without 

shifting the nose location. Moreover, in past works only the vibration amplitudes at various wind 

speeds were focused rather than exploring the flow field systematically in detailed to understand the 

 

 

           
 

Figure 1.6: Important paramters of a stremalined single box bridge deck   

  

 

 

   
(a) Edge fairing (W=1) (b) Streamlined deck (W=0.6) (c) Hexagonal deck 

without fairing 

 

Figure 1.7: Considered various long-span cable supported brdige deck 
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influence of those shaping parameters on flow field to reveal the flow mechanism. In addition, issue 

like steady state response such as drag force, lift force and moment coefficients is also important and 

should be treated equally similar to the dynamic responses as they are the basic wind forces act on 

the bridge. Influence of shaping parameters on steady state force coefficients should be also 

clarified. Hence, there are a number of obscure points and only a handful amount of meaningful 

information can be extracted from past wind tunnel investigations.  

 

          Still engineers need to go through very lengthy process to finalize their wind resistant design 

of long-span bridge, where the first step starts with the modification of the deck cross-section and 

continues updating the deck shape until the safety criteria are satisfied (Miyata et al. 1992 and 

Fujino et al. 2012). Basically, the updating regarding the shape of the deck is carried out by trial and 

error approach and based on engineer‟s experience. The situation becomes even more complicated as 

the preliminary shape of the deck is basically determined based on the structural, maintenance or 

architectural point of view. This incurs constrain for some of the shaping parameters (B, b and d) and 

their magnitude differ from one bridge to another. Therefore, the updating process of the shape 

varies from bridge to bridge and this consumes a lot of time, budget and efforts to find the optimum 

shape of the bridge deck. This process can be made way far faster and design friendly if the flow 

mechanism of the deck shape is well understood making the engineers capable of selecting 

appropriate shape promptly.   

 

          Another aspect is, a number of cable-supported bridges decks in Japan have been without 

adding the fairing at the side of the deck. Fig.1.7(c) shows the hexagonal bridge deck without 

fairing. This type of deck has superiority over streamlined deck as they don‟t even require fairing at 

the side of the deck saving construction cost. Like streamline deck, they also have similar shaping 

parameters except the top plate slope (ζT). Instead of top plate slope (ζT), they have two new shaping 

parameters such as curb angle (β) and curb height (h/D). Therefore, for this type of bridge aslo has a 

number of important shaping parameters: i) Bottom plate slope (ζB), ii) Width ratio (W), iii) Side 

ratio (R), iv) Curb angle (β) and v) Curb height (h/D). The influence of these parameters on 

aerodynamic response and flow field hexagonal bridge deck is not completely clear as no detailed 

research has been dedicated yet.  

 

          Basically, the hexagonal deck shape is the extended version of the pentagonal shaped deck 

that was proposed by Kubo and his associates (Yoshida et al. 2006, Kubo et al. 2007 and Noda et al. 

2009) based on Separation Interference Method (SIM) (Kubo et al. 1993 and 2008) and exists some 

recommendations regarding the bottom plate slope (ζB). However, the behavior of a hexagonal 

shaped bridge deck will be different from that of a pentagonal shaped deck, as in case of hexagonal 

deck a new shaping parameter bottom deck width (b) appears. It is also important to compare the 

aerodynamic response of deck with (streamlined) and without (hexagonal) fairing for better 

understanding the influence of fairing and the insights of aerodynamics to alleviate the shaping 

procedure of bridge deck.   

 

 

 

1.2    Aim, Scope and Objectives 
 

 

The aim of the present study was to clarify the influences of various shaping paramters on the 

aerodynamic response and the flow field of a single box bridge deck to reveal the flow mechanism 

behind that to facilitate the wind-resistant design procedure of long-span brige deck.  



 
Introduction           Page | 8 

 
 

          The scope of the present study covers various shaping parameter of a single box deck such as 

top inclined plate slope (ζT) and bottom inclined plate slope (ζB), width ratio (W) and side ratio (R). 

Regarding the flow type, we considered only smooth flow, yet the Reynolds number influence was 

tried to explore up to an affordable range. At the present study we basically focused on the influence 

of aforesaid parameters on steady state response and the flow field. By exploring and understanding 

the flow field well, we tried to explain the possible effects of shaping parameters on dynamic 

responses such as vortex shedding and flutter instabilities.   

 

          To accomplish the aim of the study within this scope, the specific objectives of the research 

are to: 

  

          -Collect the detailed dimension of existing long-span cable-supported bridge decks to extract 

information regarding the value of various shaping parameters practiced practically and their range 

of values.  

 

           -Investigate the influence of shaping parameters for range of values determined previously on 

steady state response of single box deck with and without fairing to find trend in the result. 

 

          -Analyze the flow field in details to determine the most influential aerodynamic flow features 

that controls the steady state response and their behavior due to variation of shaping parameters to 

grasp the mechanism behind the trend in results. 

 

          -Investigate the influence of Reynolds number (ReB) on steady state response and the flow 

features identified previously.  

 

          -Demonstrate the influence of important shaping parameters on dynamic behavior of the 

bridge deck and to comprehend the role of various flow features on dynamic responses such as 

vortex shedding and flutter instabilities.  

 

 

 

1.3    Methodology  
 

 

In the present study it was intended to investigate the influence of various shaping parameter on 

aerodynamics of the bridge deck to evaluate their relative performance and understand the flow 

mechanism. In bridge aerodynamics field usually wind tunnel investigation is carried out, where the 

wind speed is gradually increased and vibration amplitude is recorded for vortex shedding vibration 

and flutter instability to evaluate aerodynamic performance. However, from this kind of 

investigation method only quantitative response can be obtained without understanding mechanism 

behind the response. Further, in this kind of method it is difficult to compare aerodynamic 

performance for deck having various shapes as the response depends on velocity and structural 

properties of the model.  

 

          To understand the flow mechanism that means the cause behind the response it is more 

rational to go for detailed response such as pressure distribution and visualization of flow those 

controls the aerodynamic response. Past researchers (Nakamura and Nakashima 1986, Hourigan et 

al. 2001, Mills et al. 2002, Mills et al. 2003, Tan et al. 2004) also utilized surface pressure 

distribution, observation of flow field, shedding frequency as a parameter of interest to reveal the 
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flow mechanism of vortex induced vibration of sharp edge bluff bodies. In bridge aerodynamic field 

also researchers often focus on pressure distribution (Kubo et al. 1992, Noda et al. 2009, Noda 2010, 

Šarkić et al. 2012, and Haque et al. 2015), visualization flow field (Kubo et al. 1992, Nagao et al. 

1997, Kubo et al. 2007, Noda 2010, Larsen and Wall 2012, and Haque et al. 2015) and detailed 

analysis of the velocity field (Terres-Nicoli and Kopp 2009, Taylor et al. 2009, Taylor et al. 2012 

and Haque et al. 2015) around the deck to unveil the cause behind and for better comprehension of 

the quantitative aerodynamic response obtained by wind tunnel investigation.  

 

          Therefore, in the present study we also adopted similar but different strategy. We considered 

mean and root mean square (rms) value of steady state force coefficients (Simiu and Scanlan 1996) 

as a static parameter of interest and investigated influence of various shaping parameters on them. 

We scrutinized the data and tried to find the trend in the result due to variation of shaping 

parameters. Basically, these aerodynamic force coefficients are the resultant of various flow features 

those take place around the bridge deck and meaningful information regarding the static and 

dynamic response of the deck. For example a deck having less mean value of aerodynamic 

coefficients implies that the deck will experience less aerodynamic loading and displacement at high 

wind speed. Further, sign or direction of the force also plays an important role. A negative lift value 

entails that the deck will experience downward force increasing the cable tension and overall 

stiffness on the bridge deck. On the other hand, the rms value of steady state force coefficients 

provides a general idea of the dynamic response of the bridge deck. 

 

          Then, the pressure, velocity, streamlines and vorticity fields around the deck were plotted in 

detailed to explore the flow field. The data were scrutinized to determine the most influential flow 

features those controls the steady state responses, their roles on steady state response , their behavior 

due to change in shape and Reynolds number (ReB). After understanding their role on steady state 

response and behavior due to variation of shaping parameter, then we focused on dynamic behavior 

of the deck such as vortex induced vibration and flutter instability.  

 

         Based on flow field and steady state response, we selected a number of deck shapes as a 

representative case to evaluate their dynamic behavior. To evaluate their dynamic response, we 

calculated flutter derivatives (Scanlan and Tomko 1971) as they can be used as a metric for dynamic 

characteristics of bluff bodies as shown by Matsumoto (Matsumoto 1996, Matsumoto et al. 1996, 

1997, 1999, 2007, 2008a and 2008b). Further, we also concentrated on unsteady pressure 

characteristics and calculated the aerodynamic damping on the deck surface to elucidate the 

influence of those flow features on dynamic behavior of the bridge becks as it already had been 

adopted by number of past researchers (Miyata et al. 1983, Matsumoto et al. 1993, Nagao et al. 1997 

and Sukamta et al. 2008) to analyze dynamic behavior of the bridge deck.  

 

          Aforesaid responses can be obtained either by wind tunnel experiment or by Computational 

Fluid Dynamics (CFD) techniques. In wind tunnel, small-scale bridge model is made maintaining 

similarities in terms of structural and aerodynamic properties with the prototype structure to 

reproduce the actual aerodynamic response in a wind tunnel. The accuracy of the results depends on 

the quality of the model and accuracy of the model set-up. Nevertheless, making accurate model is 

cumbersome and quite expensive in terms of time and money. Specially, for flow field analysis by 

Particle Image Velocimetry (PIV) or Laser-Induced Fluorescence (LIF) is considerably costly, the 

model setup procedure is completed and the quality deteriorates at higher velocity and for 

complicated geometry as the laser light obstructed by the parts of the model (Blocken 2014). Those 

made an obstacle for the present study to go for wind tunnel approach, as a number of shaping 

parameters were altered requiring a large number of models of the bridge deck.   
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          We went for the Computational Fluid Dynamics (CFD) techniques by employing OpenFOAM 

(V2.2), an open source code of as a solver to obtain the target aerodynamic response as discussed 

earlier. Over the last few decades researchers has dedicated enormous efforts to establish CFD as a 

research and practice tools in wind engineering (Blocken 2014). A number of CFD applications can 

be found in bridge aerodynamics in the literature (Shirai and Ueda 2001, Bruno and Mancini 2002; 

Watanabe and Fumoto 2008; Sarwar et al. 2008; Sarwar and Ishihara 2010, Nieto et al. 2010; 

Mannini et al. 2010a, Šarkić et al. 2012 and Brusiani et al. 2013, Miranda et al. 2014, Nieto et al. 

2015 and Patruno 2015) and becoming an increasingly attractive tool in bridge and bluff body 

aerodynamics field. CFD has some particular advantages over wind tunnel experiment. It provides 

the complete information of all the flow variables in the flow domain under controlled environment 

and number of simulation is out of economic constrains. This makes CFD a suitable and better 

approach for the present study.  

 

          Specially, CFD is capable of generating distribution of various flow variables that makes it 

even better choice for the present study to adopt it as a research tool. Further, no detailed numerical 

investigation has been devoted until now on bridge deck shaping effects on aerodynamic response. 

However, the accuracy and reliability of CFD simulation results and the computational cost in terms 

of time are matter of concern. We choose two-dimensional unsteady Reynolds-Averaged Navier-

Stokes (RANS) simulation to cope with the computational cost as large number simulations were 

carried out. Basically, two-dimensional simulation provides conservative results as it assumes 

uniform flow behavior in the span-wise direction. Further, in the present study only cross-sectional 

shaping parameters were altered lessening the demand of three-dimensional analysis. On the other 

hand, unsteady RANS simulation is computationally less expensive and possesses moderate 

accuracy having efficiency to grasp the flow field and trend in results (Mannini et al. 2010a, Nieto et 

al. 2015 and Haque et al. 2015). A number application of two-dimensional unsteady RANS can be 

found in bridge aerodynamics field (Shirai and Ueda 2001; Nieto et al. 2010; Mannini et al. 2010a, 

Sarkic et al. 2012, Brusani et al. 2013 and Nieto et al. 2015).  

 

          To deal with the issue regarding the accuracy and reliability, we carried out detailed 

verification and validation studies to increase the accuracy and reliability of the simulation result, 

respectively. We devoted elaborate grid dependency tests by following standard procedure (Roache 

1998) and proposed a methodology to obtain grid independent result for bluff bodies promptly and 

with less effort. We validated both the static and dynamic results for rectangular cylinder of side 

ratio (R) of 5, for streamlined deck and for hexagonal shaped bridge deck by comparing with past 

experimental works (Okajima 1982, Reinhold et al. 1992, Matsumoto et al. 1996, Ricciardelli & 

Marra 2008, Šarkić et al. 2012 and Noda 2010) and quantified the quality of validation with proper 

validation metric (Oberkampf and Trucano 2002).  

 

 

 

1.4    Organization of the Thesis 
 

 

The thesis is consists of seven chapters. The first two chapters are introductory chapter. In third 

chapter the details of the adopted CFD techniques are discussed. Chapter 4, 5 and 6 presents the 

results of the study. Last chapter draws conclusions and provides some recommendations for future 

works. Tables and figures are embedded in the text and all the references citied in the text are listed 

at the end of thesis. The nomenclatures are consistent throughout the thesis. The detailed 

organization of the thesis is summarized as follows:  
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          Chapter 1 introduces the evolution, advancement, current status and challenges in 

aerodynamic of long-span cable-supported bridges. It reviewed past works to solve the existing 

challenges and discussed the problem in detail. Then, the aim, objectives and methodology is 

mentioned. At the end, the outline of the thesis is presented.    

 

          In Chapter 2, survey results of practically constructed bridges are presented. The detailed sing 

convention and methodology for aerodynamic analysis are also introduced. Chapter 3 presents the 

background of the CFD techniques utilized in the present research. The governing equations, 

turbulence model, numerical methods adopted for equation discretization and solution technique are 

described. The grid independency and validation study results are provided at the last part of the 

chapter.   

 

          Chapter 4 discusses the effects of top plate slope (ζT), bottom plate slope (ζB), nose location 

(h) and handrail types on steady state force coefficients of a single box deck with edge fairing 

(W=1). The obtained trends in the results are explored by means of pressure and velocity 

distribution. Then, the influence of width ratio (W) is discussed for various bottom plate slopes (ζB) 

on steady state force coefficients and mechanism is tried to elucidate by means of pressure, velocity 

and vorticity fields.  

 

          In Chapter 5 the aerodynamic behavior of the bridge deck without fairing is presented. First, 

the aerodynamic response of pentagonal shaped deck (W=0) is analyzed. Then, the influence of 

width ratio (W) is discussed for various bottom plate slopes (ζB) on steady state force coefficients 

and flow field is explored by means of pressure, vorticity and velocity field.  

 

          Chapter 6 demonstrates the flutter derivatives of some selected deck sections with and without 

fairing. Unsteady pressure characteristic is explored and the role of influential flow features on 

aerodynamic damping is analyzed to apprehend the shaping effects on dynamic behavior of the 

bridge decks.     

 

          The general conclusions and recommendations are summarized in Chapter 7.  

 

 

 

 

 

 
 



 

 

 

 

 

Chapter 2 

 

General Background 

 
 

Over the last few decades a large number of long-span cable-supported bridges have been 

constructed and going to be constructed in future. As the span length of the bridge increases, the 

deck becomes susceptible to aerodynamic problem due to their inherent flexibility and low damping. 

Aerodynamic responses are sensitive to the shape of the bridge deck (Nagao et al. 1993, Kawatani et 

al. 1993, Sakai et al. 1993, Larsen et al. 1993, De Marinda and Bartoli 2001 and Sukamta et al. 

2008) and can be improved by shaping it properly (Wang et al. 2009 and Larsen and Wall 2013).  

 

          There are a number of shaping parameters that may affect the aerodynamic response as 

discussed in the last chapter. However, their detailed influence and mechanism behind the response 

is not well known yet. As a result, engineers need to go through lengthy design procedure to select 

the appropriate and optimum deck cross-section. In this study the influence of various shaping 

parameter of a streamlined deck with and without fairing was carried out on aerodynamic response 

and tried to clarify the mechanism behind that to facilitate the bridge deck design procedure.  

 

           This chapter provides general background information required to read this dissertation. First, 

detailed survey result regarding the type of the deck shapes employed for longs-span cable-

supported bridge and the range of the shaping parameters are presented. Then, the theory, 

expressions and aerodynamic analysis procedure adopted for the evaluation of steady state force 

coefficients, flutter derivatives and aerodynamic damping are discussed.    
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2.1    Type of Long-Span Bridge Deck  
 

 

The aim of the present study was to investigate the influence of various shaping parameters of long-

span cable-supported bridge deck on aerodynamic response. However, for long-span cable-supported 

bridges various types of deck shapes are adopted based on structural and aerodynamic point of view. 

It is quite impossible and irrational to investigate all those deck shapes. Therefore, to make it 

affordable it was important to narrow down the type of deck shape. From preliminary observation, 

we found that truss deck, single box streamlined deck, twin box deck are the most common forms of 

deck shape used for long-span bridges. Some others forms of deck shapes are also available. Fig.2.1 

shows the various types of bridge deck used for long-span cable-supported bridge deck.  

 

          We surveyed a total number of 81 long-span cable-supported bridge decks spanning from 200 

m to 1991 m all over the world. The data were collected from Tatsumi (2010), Svensson (2012) and 

webpages of various consultant and construction companies. We found that out of 81 bridge decks, 

38 bridge decks were single box streamlined deck. In Fig.2.2 we plot the survey results. As can be 

seen 47% of the bridge decks are single box streamlined deck. 15% of them are truss deck, 10% of 

them are twin box deck and remaining 28% are other type including hexagonal deck without fairing. 

Therefore, we focused on single box streamlined bridge deck as they are the most widely used 

bridge deck for long-span cable-supported bridge. Further, taking this opportunity we also focused 

on hexagonal deck without fairing (Fig.2.1(e)) as the background was already discussed in Chapter 1 

(Section 1.1) that recently a number of medium span cable-supported bridges in Japan have adopted 

this type of deck shape. Furthermore, we also intended to make a relative comparison between the 

aerodynamic response and flow field of deck with and without faring to elucidate the effect of 

fairing in a better way. This would also ease the shaping procedure of many future bridge decks and 

explicate the wind tunnel results.   

 

 

 
(a) Single box streamlined deck 

 
(b) Twin box streamlined deck 

 
(c) Truss deck 

 
(d) Trapezoidal deck 

 
(e) Hexagonal deck without fairing 

 

Figure 2.1: Various deck shapes used for long-span cable-supported bridge 
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Figure 2.2: Survey results on type of long-span cable-supported bridge deck  

 

 

 

2.2    Shaping parameters of Bridge Deck 
 

 

It was important of have the detailed information of shaping parameters of practically constructed 

streamlined deck before commencing the investigation. We could manage detailed information of 22 

streamlined bridge decks, those were taken from Strommen and Hjorth-Hansen (2001), Yu Ng 

(2007), Wang et al. (2009), Teres-Nicoli and Kopp (2009), Tatsumi (2010), Jurado et al. (2012), 

Jensen (2013), Virola (2013). Table 2.1 provides the general information and the detailed shaping 

parameters of the streamlined bridge deck those were surveyed. Some of the displayed shaping 

parameters may slightly differ from the actual one as they were retrieved from the pictures. Fig.2.3 

plots the survey results for various shaping parameters. In Fig.2.3(a) the top (ζT) and bottom plate 

slopes (ζB) are plotted. These two parameters are the two most important shaping parameters. The 

bottom plate slope (ζB) varies from 10º to 30º, yet the top plate slope (ζT) varies a lot from 15º to 60º. 

All of those bridge deck shapes were selected based on wind tunnel study to fulfill the wind-resistant 

design criteria, yet varies a lot.  

 

          In Fig.2.3(b) diagrams the side ratio (R) and width ratio (W) of long-span bridge deck. The 

term, Side ratio (R) is an established parameter in bridge aerodynamics field defined as the ratio of 

the width (B) to the height (D) of the deck. On the other hand the width ratio (W) was defined newly 

in this work as the ratio of the bottom (b) to the top (B) horizontal deck width. These two parameters 

basically depend on structural design and the traffic volume. The side ratio (R) varies larger than the 

width ratio (W). The side ratio (R) varies from 5 to 12.5, while the width ratio (W) varies from 0.5 to 

0.8. However, the width ratio (W) may be as high as 1, when the fairings are attached at the side of 

the deck such as Deer Isle (USA), Bronx-whitestone (USA), Hakucho (Japan) and Tempozan 

(Japan) bridges. These data are absent in Fig.2.3(b), as we couldn‟t manage shaping information of 

those bridge decks.        

 

          For hexagonal deck without fairing, we could collect shaping information of only four bridge 

decks constructed in Japan from Tatsumi (2010), Matsuyama (2013), Takada (2011), Nippon 

Engineering Consultant. Table2.2 incorporates the shaping information including the general 

information of the decks. The side ratio (R) varies from 5 to 8. For smaller side ratio (R) of around 5, 

the width ratio (W) is maintained around 0.2, yet for higher side ratio (R) the width ratio (W) may  

47%

15%

10%

28%

Single Box Streamlined Deck

Truss deck

Twin box deck

Other (Trapezoidal Deck, Hex.

Deck without faring)
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Table 2.1: Streamlined bridge deck surveyed to obtained detailed information about the shaping 

parameters  

 

Name of the Bridge Country 
Span 

Length (m) 

Side 

Ratio (R) 

Width 

Ratio (W) 

Top Plate 

Slope (ζT) 

Bottom 

Plate Slope 

(ζB) 

Great Belt Bridge Denmark 1642 6.75 0.70 33.70 26.60 

Nanjin-4 Bridge China 1418 10.20 0.62 57.40 15.50 

Tasing Ma Bridge China 1377 4.60 0.80 36.00 31.20 

Huga Kuston Bridge Sweden 1210 4.45 0.55 35.50 22.60 

Halogaland Bridge Denmark 1145 5.00 0.53 41.40 15.80 

Sutong Bridge China 1088 9.5 0.60 49.10 15.50 

Taizhou Bridge China 1080 10.50 0.58 30.72 17.35 

Edong Bridge China 926 10.30 0.69 33.69 19.44 

Jingyue Bridge China 816 9.55 0.73 45.00 24.22 

Incheon Bridge Korea 800 11.00 0.50 55.30 11.25 

Shanghai Bridge China 730 12.50 0.67 59.00 17.08 

Nanjin-3 Bridge China 648 10.70 0.63 33.70 15.80 

Nanjin-2 Bridge China 628 8.60 0.73 45.00 28.50 

Osteroy Bridge Norway 595 5.30 0.63 62.85 29.50 

Meikou Chuoo Bridge Japan 590 10.00 0.72 26.70 21.00 

Tsurumi Tsubasa 

Bridge 
Japan 510 8.75 0.50 33.70 16.30 

Miekou Higashi 

Bridge 
Japan 410 9.9 0.72 25.30 22.00 

Meikou Nishi Bridge Japan 405 6.35 0.55 35.80 23.45 

Japan-Egypt Bridge Egypt 404 8.00 0.53 42.00 16.07 

Oshima bridge Japan 350 3.80 0.67 15.70 22.62 

Shinonomichi Bridge Japan 215 9.90 0.65 43.53 15.43 

Cantho Bridge Vietnam 210 9.30 0.50 60.25 16.39 

 

 

 
(a) Top and bottom plate slope 

 
(b) Side and width Ratio 

 

Figure 2.3: Shaping parameters of practically constructed streamlined bridge deck 
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Table 2.2: Survey results of various shaping parameters of hexagonal bridge deck without fairing 

 

Name of the 

Bridge 

Span 

Length 

(m) 

Bottom 

plate 

Slope (ζB) 

Side 

Ratio 

(R) 

Width 

Ratio 

(W) 

Notations 

Takeshima 

Ohashi 

400 15.8º 5.85 0.45 

 

Shintenmom 

Bridge 

264 14.96º 5.20 0.21 

Oshima Bridge 226 11.95º 5.50 0.23 

Kesennuma 

Bridge 

360 12.18º 7.81 0.47 

    

 

 

reach up to 0.5. The bottom plate slope (ζB) varies from 12º to 16º. Basically, the bottom pate slope 

(ζB) is maintained around 12º based on the recommendation of Kubo et al. (2007). Where 

investigation was carried out for a pentagonal shaped bridge deck and showed that at a bottom plate 

slope (ζB) of 12º the deck experiences minimum aerodynamic loading and the flutter wind speed 

increases. However, practically constructed bridges are hexagonal in shape and their aerodynamics 

would be different from that of a pentagonal shaped bridge deck. Therefore, the optimum bottom 

plate slope (ζB) for a pentagonal shaped deck may not be optimum for hexagonal shaped bridge as a 

new shaping parameter the bottom horizontal plate (b) appears.    

 

 

 

2.3    Aerodynamics Analysis 
 

 

We conducted both static and dynamic aerodynamic analysis of bridge decks. We calculated steady 

state force coefficients of bridge decks and focused on their mean and root-means-squared (rms) 

value. We also conducted forced vibration simulation to estimate the flutter derivatives and 

aerodynamic damping of the bridge decks. In this section the detailed procedure of aerodynamic 

analysis and formulations are described. 

 

 

 

2.3.1    Steady State Force Coefficients 
 

 

For design of flexible structure like long-span bridge deck, aerodynamic forces and moments are 

important design parameter and considered at the very first stage of design to estimate the wind load 

(Miyata et al. 1992 and Fujino et al. 2012). The deck is always tried to design to have less wind load 

exhibiting nominal translation, deformation and rotation at the maximum design wind speed. For 

two-dimensional analysis, two aerodynamic forces and moment are considered: i) Drag force (FD), 

ii) Lift force (FL) and iii) Moment (FM).  
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          The aerodynamic forces and moments depend on number of geometric and flow parameters. 

Normally, the aerodynamic forces or moment are normalized with the velocity head (ρU2/2) and the 

characteristics length (D or B) to make them dimensionless (Simiu and Scanlan 1996). This 

conversion has significant advantages in the aerodynamic calculations and makes calculation simple. 

For example, the forces and moments acting on practical bridges are quite large quantity; the same 

forces and moments acting on a scale model obtained by wind tunnel experiment or by numerical 

simulation are quite small, yet in both of the case the aerodynamic coefficients will be the same. In 

the present study during analyzing the static responses, these coefficients were named as steady state 

force coefficients as the model was in static condition when the forces and moments were measured. 

 

          Fig.2.4 shows the direction of the positive forces, moments and characteristics length of the 

bridge deck. The aerodynamic forces and moment can be expressed in terms of steady state force 

coefficients as shown in Eq.2.1 to Eq.2.3: Where: FD, FL and FM are the drag force, lift force and 

moment acting on the bridge deck respectively. ρ is the air density, B and D are the characteristic 

length, U is the flow velocity. In Eq.2.1 to Eq.2.3, the forces and moment can be calculated by 

integrating the pressure on the body surface in the along-flow and across-flow directions. In 

numerical simulation, the pressure can be obtained directly by solving the governing equations at 

any point in the flow domain. Other variables in Eq.2.1, Eq.2.2 and Eq.2.3 are problem dependent 

and known by the user. 

 

           In case of bridge deck without handrail the force and moment were normalized by the deck 

depth (D) only. For bridge deck with handrail cases, Eqs.2.1 to 2.3 were normalized by the total 

depth of the deck (Dʹ=D + d, where, d, is the depth of the handrail). In case of static response, the 

steady  state  force coefficients  were normalized by  the top  width  (B) of  the bridge deck,  yet  for  
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Figure 2.4: Definition of positive forces and characteristics length 
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dynamic response (flutter derivatives) those coefficients were normalized by the total width (B1) of 

the bridge deck. Other parameters, such as Strouhal number (StB=fvB/U, where, fv, is the shedding 

frequency) and Reynolds number (ReB=UB/νt, where, νt is the kinematic viscosity of the fluid) were 

mostly normalized by the width of the bridge deck (B). In some cases the depth (D) of the bridge 

deck was also utilized and was indicated by the subscript. 

 

          The steady state force coefficients are obtained as a function of time from numerical 

simulations. We focused on the mean and root mean square (rms) value of the fluctuating force 

coefficients. The mean value was the static component and the rms value was the dynamic 

component of the fluctuating force coefficients, provides a measure of the energy associated with the 

specific data set. The mean and rms value of time-varying steady state force coefficients were 

calculated as described by Eq.2.4 and 2.5, respectively. 
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2.3.2    Flutter Derivatives 
 

 

Flutter derivatives are empirical coefficients by means of them the aeroelastic forces acting on a 

bridge decks can be expressed (Scanlan and Tomko 1971 and Scanlan, et al. 1974) and widely used 

in bridge and bluff body aerodynamic fields to assess the dynamic behavior of the bridge deck under 

wind action such as flutter (Matsumoto et al. 1996, 1999, 2007, Chen 2007, Matsumoto et al. 2008a, 

2008b). It was first derived by Scanlan and Tomko (1971) and proposed only 6 flutter derivatives- 

A1
*, A2

*, A3
*, H1

*, H2
* and H3

*. However, 2 more flutter derivatives i.e. A4
* and H4

* were included 

later for two-dimensional analysis (Simiu and Scanlan 1996) and in case of three-dimensional total 

18 flutter derivatives (Chen et al. 2000 and Chen et al. 2002) are required to apprehend the complete 

aerodynamic phenomena concerning the fluid-structure interactions. In this work two-dimensional 

simulation were conducted, hence only 8 flutter derivatives are needed.       

 

 

2.3.2.1    Mathematical Background 
 

In this section we will briefly introduce the governing equation of motion and self-excited force of a 

bridge deck in a smooth flow. Interested readers are referred to Simiu and Scanlan (1996) for 

detailed formulation of equation of motion and its solution. In two-dimensional flow the motion of a 

bridge deck can be described by two degrees of freedom: bending (ε) and torsional (α) displacement. 

The bridge deck system was considered as a rigid body hang in balance around its mid-chord. For 

this system according to Theodorsen (1935) and Scanlan and Rosenbaum (1951) the equation of 

motion can be written as follows,   
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   ,2 2 tLm   
  (2 .6) 

  

   ,2 2 tMI   
  (2 .7) 

 

 

where L(t) and M(t) are, respectively, the self-excited aerodynamic lift and moment acting on the 

bridge deck per unit span; ωε and ωα are the circular frequencies 2.π.fε and 2.π.fα of the heaving (ε) 

and torsional (α) oscillations; ε is the heaving displacement; α is the torsional displacement; the dots 

(˙) and (˙˙) mean the derivatives with respect to time t; m is the mass of the bridge deck per unit 

span; I is the mass moment of inertia per unit span length of the bridge deck; δε and δα are the 

heaving and torsional motions damping ratios-to-critical.   

 

          It was first Theodorsen (1935) who gave the expressions of L(t) and M(t) for a thin airfoils in 

incompressible flow based on the potential flow theory. The self-excited force and moment were 

expressed in terms of some coefficients referred as aeroelastic coefficients. Two theoretical 

functions F(k) and G(k) were required to define those aeroelastic coefficients. However, those 

expressions of self-excited force were not applicable for bluff bodies like bridge deck section. Then, 

Scanlan and Tomko (1971) derived the expressions of self-excited lift and moment for bluff bodies. 

It was showed that like airfoil, in case of bluff body also the self-excited L(t) and M(t) could be 

expressed in terms of some aeroelastic coefficients, yet those coefficients were functions of reduced 

velocity (U/fB1). Eq.2.8 and Eq.2.9 shows the expressions of self-excited L(t) and M(t) having two-

degrees of freedom.   
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where L(t) and M(t) are the time-varying self-excited lift force and moment per unit span of the 

bridge deck, respectively; ρ is the air density; U is the mean wind speed; k is reduced frequency, 

k=B1.ω/U; ω is circular frequency, 2.π.f; B1 is the full-width of the bridge deck; ε is the heaving 

displacement; α is the torsional displacement; the dot (˙) represents first time derivatives; Hi
* and Ai

* 

are the aeroelastic coefficients known as flutter derivatives. Eq.2.8 and Eq.2.9 can also be written in 

terms of time-varying self-excited lift (CL(t)) and moment (CM(t)) coefficients as follows: 
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2.3.2.2    Extraction of Flutter Derivatives 
 

A number of system identification methods have been formulated over the times either in time or 

frequency domain to extract the flutter derivatives from wind tunnel tests (Scanlan and Tomko 1971, 

Sarkar et al. 1992, Yamada et al. 1992, Bogunovic-Jakobsen and Hijorth-Hansen 1995, Singh et al. 

1996, Matsumoto et al. 1996, Chen et al. 2002, Chowdhury and Sarker 2003, and Bartoli and Righi 

2006). The methods are different in terms of algorithm, yet can be divided into two wide categories 

(Sarker etl al. 2009): i) Free vibration method and ii) Forced vibration method. In wind tunnel study 

generally free vibration technique is adopted as experimental setup is simpler, yet requires 

completed system identification methods. On the other hand, forced vibration technique requires 

complicated model setup, yet calculation of flutter derivatives is easier and simple. In the present 

numerical work we adopted a forced vibration technique to extract the flutter derivatives.  

 

          To extract the flutter derivatives from Eq.2.10 and 2.11, it is required to be assumed that the 

bridge deck is in a harmonic motion in time as expressed by Eq.2.12 and Eq.2.13.   
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where, εo is the amplitude of the given heaving motion, αo is the amplitude of the given torsional 

motion and ω is the circular frequency of motion, same both in heaving and torsional mode. Now 

assuming the aerodynamic process is linear, it can also be assumed that the motion induced forced 

are also harmonic in time with the same frequency ω of excitation, yet shifts by a phase of amount υ 

relative to the motion. Based on all these assumptions by exploiting Eq.2.10, Eq.2.11, Eq.2.12 and 

Eq.2.13 the following expressions of flutter derivatives can be obtained (Larsen and Walther 1998, 

and Nieto et al. 2015): 
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where in general, CLo is the amplitude of the time varying lift force coefficient (CL(t)), CMo is the 

amplitude of the time varying moment coefficient (CM(t)), υM is the phase lag between the moment 

and the imposed motion (ε or α) and υL is the phase lag between the lift force and the imposed 

motion (ε or α). It should be noted that instead of lift force (L(t)) and moment (M(t)) history, we can 

directly work with the lift force (CL(t)) and moment (CM(t)) coefficients.  

 

          Now, to calculate these flutter derivatives, in CFD a single degree of freedom torsional (α) or 

heaving (ε) oscillations were assigned by Arbitrary Lagrangian-Eulerian (ALE) technique (Donea et 

al. 2004) to collect the lift force (CLα(t) or (CLε(t)) and moment (CMα(t) or CMε(t)) coefficients 

history. Thereafter, to calculate the amplitude of the lift force (CLαo or CLεo) and moment (CMαo or 

CMεo) coefficients of the time history data obtained as a numerical output, the high frequency 

components were filtered out from the obtained time history data by employing curve fitting 

techniques as like Stӕrdahl et al. (2007), Brusiani et al. (2013) and Patruno (2015). Then, the phase 

lag (υLα and υMα or υLε and υMε) between the fitted curve (CLα(t) and CMα(t) or (CLε(t) and CMε(t))  

and the incurred motions (α or ε) were estimated.   

 

          By exciting the bridge deck in torsional mode the torsional flutter derivatives (Eq.2.14 to 

Eq.2.17) can be evaluated. In this study we fundamentally focused on torsional flutter derivatives 

both for streamlined decks and hexagonal decks without fairing. Computing total 8 flutter 

derivatives directly from the force-vibration simulation is quite time consuming as the simulation is 

required to be conducted both in heaving and torsional mode for a number of reduced velocity 

(U/fB1) separately. The heaving mode flutter derivatives were calculated by exploiting the 

interdependency relationships among the flutter derivatives. Only for few sections at a particular 

reduced velocity, heaving mode simulations were carried out to explore the unsteady pressure 

characteristics, 

 

          The heaving mode flutter derivatives (A1
*, A4

*, H1
* and H4

*) can be calculated from 

interdependency relationships among the flutter derivatives. A number of past researches have 

already mentioned about the interdependency among eight flutter derivatives for two-dimensional 

characterization of the bridge decks (Matsumoto 1996, Matsumoto et al. 1996, Scanlan et al. 1997, 

and Tubin 2005).  Matsumoto (1996) showed the interdependency relationships among the flutter 

derivatives for rectangular bluff bodies and recommended a lower bound of rectangular cylinder of 

side ratio (R) of 5 to use his proposed relationships. Later, Tubin (2005) checked again the 

interdependency relationships among the flutter derivatives and found that the interdependency 

relationships among the flutter derivatives hold even better for streamlined deck rather than the bluff 

decks. Further, this kind of procedure has already been adopted in CFD approach to estimate flutter 

derivatives to reduce the computation load (Nieto et al. 2015).  
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          Therefore, using the opportunity of the present study we also used the interdependency 

relationships among flutter derivatives for some cases to calculate the heaving mode flutter 

derivatives to lessen the number of simulation. The following expressions were considered to 

evaluate the heaving mode flutter derivatives (A1
*, A4

*, H1
* and H4

*) given by Matsumoto (1996):  
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2.3.2.3    Role of Flutter Derivatives 
 

The flutter derivatives are capable of explaining distinct aerodynamic properties of bridge and bluff 

bodies. The derivatives are classified into two categories: i) Coupled and ii) non-coupled. A2
*, A3

*, 

H1
* and H4

* are the non-coupled flutter derivatives and affects the corresponding degree of freedom 

they are associated with. On the other hand, A1
*, A4

*, H2
* and H3

* are the coupled flutter derivatives 

affects the other degree of freedom (Trein 2009).  

 

          A1
* and A2

* provide information regarding the heaving and torsional aerodynamic damping, 

respectively, A3
* related to the aerodynamic stiffness and A4

* to the torsional displacement. 

Similarly, like Ai
*, Hi

* has also alike interpretations: H1
* and H2

* associated with the heaving and 

torsional aerodynamic damping, respectively, H3
* concerns the aerodynamic stiffness and H4

* related 

to heaving displacements.  

 

          Matsumoto et al. (1996, 1999, 2007, 2008a and 2008b) dedicated detailed investigations to 

explain the aeroelastic instability by means of the flutter derivatives and their roles on aeroelastic 

instability. By means of Step-By-Step analysis (Matsumoto et al. 1996), the role of each of the 

flutter derivative was tried to clarify in the generation of flutter instability. The results were well 

summarized by Trein and Shirato (2010) and presented here in Table 2.3. Furthermore, for elongated 

bluff  body  having a H1
*<0  and  A2

*<0 indicates the possibility  of  coupled  flutter  instability and 

 

 

Table 2.3: Role of flutter derivatives on flutter instability (Trein and Shirato 2010) 

 

Derivatives Stabilization Destabilization 

A1
* 

A2
* 

A3
* 

H1
* 

H3
* 

low absolute values 

negative values 

low absolute values 

negative values 

low absolute values 

high absolute values 

positive values 

high absolute values 

positive values, low absolute values 

high absolute values 
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increases the importance of other six flutter derivatives (Chen 2007). Single-heaving-mode flutter 

(Galloping) can be occurred only when H1
*>0 and single-torsional-mode flutter (Torsional flutter) 

for A2
*>0 (Chen 2007). 

 

 

 

2.3.3    Calculation of Unsteady Pressure Characteristics 
 

 

Based on flutter derivatives the general information about the genesis of flutter instability can be 

obtained. However, for detailed understanding the inside mechanism of aerodynamic instability, 

unsteady pressure distribution should be considered and bears meaningful information regarding the 

complex fluid-structure interaction.   

 

          In the present work, both in heaving and torsional mode the bridge decks were oscillated in a 

harmonic motion to extract the unsteady pressure characteristics of bridge deck in some particular 

reduced velocity (U/fB1). The pressure was probed at both at the top and bottom deck surface at 

various locations (x) from the center. The pressure had mean and unsteady component due to 

harmonic oscillation and depends on the wind velocity (U) and the density (ρ) of the fluid. In order 

to make it comparable among different cases the pressures were normalized with dynamic pressure, 

½.ρ.U2 and resulted mean (  xC p
) and unsteady pressure coefficients (  txC

p
, ).   

 

          The heaving and torsional oscillation was defined by cosine function (Eq.2.26 and Eq.2.27) 

and the total pressure coefficient (  txC
p

, ) was defined as like Eq.2.28. 

 

 

   ,2 tfCost
o

   (2.26) 

 

   ,2 tfCost
o

   (2.27) 

 

 

where: α(t) and ε(t) are the torsional and heaving displacement at a given time t, respectively, αo and 

εo are the amplitude of torsional and heaving oscillation, respectively, fα and fε are the torsional and 

heaving oscillation frequency of the model.  

 

 

     .,, txCxCtxC
ppp

  (2.28) 

 

 

          The mean pressure coefficient (  xC p
) can be obtained by averaging over time and doesn‟t 

alter significantly whether the body is in static or moving. On the other hand, the unsteady pressure 

coefficient (  txC
p

, ) is dependent on the amplitude of vibration. The unsteady pressure coefficient   

(  txC
p

, ) was defined by the magnitude of unsteady pressure (  xC
p

) and the phase leg (υ(x)) 

between the motion of the body and the pressure. The magnitude of unsteady pressure (  xC
p

) was 

taken as the amplitude of the periodic pressure coefficient history caused by the forced vibration 

only ignoring the high frequency component due to vortex shedding. The phase lag (υ(x)) was 
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defined as a difference in phase between the maximum relative angle of attack of the bridge deck 

and the maximum negative pressure at a distance x. Eq.2.29 shows the expression of unsteady 

pressure coefficient utilized.   .    

 

 

     .2,   tfCosxCtxC
pp  (2.29) 

 

 

          The imaginary part of the unsteady pressure (  txC
p

, ) is proportional to the velocity of the 

motion and defines as    xSinxCC
pPI

 , is related to the aerodynamic damping of the bridge 

deck (Miyata et al. 1993, Nagao et al. 1997, Matsumoto et al. 1997 and Sukamta et al. 2008). In the 

present work for heaving motion, the positive value of    xSinxC
p

  on the top deck surface was 

considered as a excitation force and negative value as an damping force to the system. On the bottom 

deck surface this was is in contrast with the top deck surface. In the case of torsional motion, the 

positive value was considered as an excitation force and negative value was a damping force on the 

top deck leading edge side and was altered at the trailing edge top bridge deck surface. Opposite sign 

convention was adopted on the bottom deck surface in relation to the top deck surface at the leading 

and trailing edge side.   

 

          The work done by the unsteady pressure can be calculated as follows, 

 

 

     xSinxC
B

xrC
PPI

  (2.30) 

 

 

where r is the normalized distance from the center of the bridge deck to the both sides.   

 

 

 

2.4    Concluding Remarks 
 

 

At the beginning of the chapter various types of deck shapes utilize for long-span cable-supported 

bridges were introduced. The range of various shaping parameters for selected deck shapes were 

presented based on the survey results of practically constructed bridges. Then, an overview of the 

static and dynamic aerodynamic analysis and formulation were demonstrated those should be 

considered as a reference for the remaining parts of this dissertation.   

 

 

 

 

 

   



 

 

 

 

 

Chapter 3 

 

Governing Equation, Numerical 

method, Grid and Validation 

 
 

In the present research Computational Fluid Dynamics (CFD) techniques was employed to predict 

the bridge deck response as mentioned earlier. OpenFOAM1 (Open Source Field Operation And 

Manipulation), an open source CFD software package was used as an solver. The development of 

the code started in the late of 1980s at Imperial College using Fortran programming language. Later, 

it was changed to C++ due to its large modularity and object oriented features. Recently, it is 

drawing attention of researchers from various fields dealing with fluid related problem including 

bluff body and bridge aerodynamicists due to its wide range of numerical methods, pre/post-

processing utilities and flexibility of customization.  

 

          We choose OpenFOAM, since it is a free code under GNU general public license. This 

allowed us as to conduct large numbers of simulations with parallel computing system without any 

restriction of license. Besides that, OpenFOAM allows customizing and accessing inside the code 

that gives user opportunity for extension and understanding the programming techniques those were 

adopted.     

 

          In this chapter the details of the theoretical background of turbulence model, numerical 

methods for discretization and the solution techniques those were selected during the case setup 

process in OpenFOAM is presented. The chapter is divided broadly into two parts. The first part deal 

with the theoretical background and the second part validates the numerical results.  

 
1www.openfoam.com/   
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          First the governing equations of fluid and the basics of unsteady Reynolds-Averaged-Navier-

Stokes (RANS) simulation is introduced. Then, the theory of turbulence model is presented. Various 

discretization techniques utilized for discretizing the equation are discussed and the solution strategy 

of discretized equation is also demonstrated. A strategy to obtain promptly and easily the grid 

independent solution are proposed too. At the end of the chapter both the static and dynamic solution 

results are validated for bluff bodies of rectangular cylinders and bridges decks having different 

shapes.     

 

 

 

3.1    Equation of Fluid Flow 
 

 

The wind flow around a bluff body can be represented by the Navier-Stokes equation. The Navier-

Stokes equation is a set of partial differential equations can be derived the from the conservation law 

of physics, i.e. mass, momentum and energy. The detailed derivation of the equation can be found in 

Anderson (1995) and Drikakis and Rider (2005). The whole system of equations includes 

conservation of mass, momentum and energy. However, in wind flow around a bluff body thermal 

effect is neglected (Simiu and Scanlan 1996), hence the energy equation was not considered in the 

present study assuming the flow is incompressible in nature as the Mach number (M) lay well below 

than 0.3 (Anderson 2010, Fletcher 1996). For incompressible flow the Navier-Stokes equation can 

be written in differential form as follows,     
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where u, v and w are the velocity components in x, y and z directions, ρ is the density and ν is the 

kinematic viscosity. The above mentioned continuity and momentum equations can be written in 

much compact differential form as shown in Eq.3.5 to 3.6 and will be written other equations 

throughout this chapter in this form.  
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          The analytical solutions of Navier-Stokes equations are exceedingly difficult due to nonlinear 

and coupled natures of the equations. Moreover, most of the engineering processes deal with high 

Reynolds number (ReB) flow that is turbulent in nature. The turbulent flow is chaotic and random in 

nature, where the pressure and velocity alters on a wide range of time and length scale. The solution 

becomes even more complicated when it is dealt with turbulent flows. 

 

          However, with the development of efficient numerical techniques and advancement of high 

speed computing technology, a number of possible approaches for numerical simulation of turbulent 

flow exist now. The most widely uttered methods are the Direct Numerical Simulation (DNS), Large 

Eddy Simulation (LES) and unsteady Reynolds-Averaged Navier-Stokes (RANS) simulation. DNS 

is the most intuitive one doesn‟t require any modeling, where the governing equations are resolved 

for all the length and time scales of the turbulence spectrum numerically. For LES appropriate 

modeling is required for high frequency parts of the turbulence spectrum and the governing 

equations are solved numerically all through the inertial sub-range of the spectrum. We will not 

deepen the discussion on these two approaches, interested readers are referred to Hoffmann and 

Chiang (2000), Pope (2000). Sagaut (2005), Jiang and Lai (2009) and Dewan (2011). 

 

          Both of this approach is computationally expensive as they require very fine meshes and small 

time steps to resolve the wide range of turbulent scales. Currently, DNS is used for benchmark 

studies and academic applications, while the application of LES for industrial problems is becoming 

practical due to availability of high performance computing system and development of parallel 

computing algorithm. Still it is not appropriate and affordable for simulation around objects having 

long boundary layer and for large number of simulations at high Reynolds number (ReB). 

Consequently, in the present study unsteady RANS simulation was opted due to its computational 

lightness and reasonable accuracy. The applicability of unsteady RANS simulation in bridge 

aerodynamics field was discussed already in section 1.3 of Chapter 1. In the next section the concept 

and governing equations of unsteady RANS simulation are introduced.        

 

 

 

3.2    Reynolds-Averaged Navier-Stokes Equation 
 

 

In unsteady RANS simulation all the unsteadiness due to turbulence is averaged out. The fluctuating 

flow variables are decomposed into averaged and fluctuating component is known as Reynolds 

decomposition (Pope 2000, Wilcox 2006 and Versteeg and Malalasekera 2007). The RANS 

equations are obtained by time averaging the Navier-Stokes equation.   

 

          Let us decompose the flow variables i.e., velocity (U) and pressure (p) of the incompressible 

Navier-Stokes equation, 
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     ,,, txpxptxp   (3.8) 
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where  xU  is the mean value part and  tx,U  is the fluctuating part in Eq.3.7. Similar notation can 

be followed for Eq.3.8. The mean value component  xU  can be obtained either by time averaging 

as shown in Eq.3.9 for statistically steady turbulence or by ensemble averaging as shown in Eq.3.10 

for unsteady turbulence. For unsteady RANS simulation the ensemble averaging is required to 

eliminate the effects of fluctuations.  
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here t  is the time, T is the averaging interval and N is the ensemble number must be large enough to 

eliminate the effects of fluctuations. Now, substituting Eq.3.7 and Eq.3.8 into Eq.3.5 and Eq.3.6 the 

desired unsteady RANS equation can be obtained as follows     
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          The unsteady RANS equation is similar to Navier-Stokes equation, except a new term τR 

appears known as Reynolds-stress tensor. Sometimes Reynolds-stress tensor is mentioned also as τij 

in Cartesian tensor format. In three-dimension, the Reynolds-stress tensor (τR) is a symmetrical 

second order tensor consists of six components and representing the transfer of momentum due to 

turbulent fluctuations.   
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          Now, if we count the number of unknowns by scrutinizing Eq.3.11, Eq.3.12 and Eq.3.13, total 

ten unknowns can be found, i.e., the three velocity components (u, v, w), the pressure and six 

components of the Reynolds-stress tensor (  UU   ). Nevertheless, we have one continuity and three 

momentum equations to solve. Therefore, the system is not close. We require six more equations to 

close the system and this is what known as Turbulence modeling.   

 

          This number of unknowns can be reduced from six to one by the Boussinesq Hypothesis. In 

1877 Boussinesq proposed that the Reynolds stress might be proportional to the mean rates of 

deformation. It was presumed that a relationship or analogy exists among the molecular and 

turbulent viscosity. Since then enormous applications of this hypothesis can be found in various 
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fields of CFD and yields reasonable results for large number of flows Therefore, based on 

Boussinesq‟s eddy viscosity approach the Reynolds-stress tensor can be relate to the mean velocity 

gradient as follows, 

 

 

     k
T

T
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3

2
UUUU  I, (3.14) 
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2

1
k  (3.15) 

 

 

here   T

UU
2

1   is Reynolds-averaged strain-rate tensor and denotes as Sij in tensor format, I is 

the identity matrix, k is the turbulent energy per unit mass and μT  is the turbulent eddy viscosity. 

Now, we require the only one equation for the turbulent eddy viscosity (μT) to make the unsteady 

RANS equations solvable. In the next section we will introduce how the turbulence eddy viscosity 

(μT) was modeled in this study, also known as turbulence modeling. In OpenFOAM, the momentum 

equation was implemented as follows: 

 

 

     . . .  

    ( 
        fvm::ddt(U) 
      + fvm::div(phi, U) 
      + turbulence->divDevReff(U) 
    ); 
    UEqn.relax(); 

       . . . 

 

 

The third term is related to the modeling of the turbulence viscosity that will be discussed in the 

following section. It is worthy to mention that, the connection to the previous time step was 

maintained through the last line of the code as shown here.  

 

 

 

3.3    Turbulence Model 
 

 

A number of two-equation turbulence models have been developed over the years to model the eddy 

viscosity (μT). The most widely used models are the k-ε model, k-ω model and the (Shear Stress 

Transport) SST k-ω model (Versteeg and Malalasekera 2007). Each of these models has their own 

advantages and disadvantages. The k-ε model is weak at the boundary layer with adverse pressure 

gradient and overestimates the turbulence shear stress, yet at the free stream turbulent location away 

from the body or wall the results are less sensitive to the arbitrary assumed values of variables at the 

inlet. On the other hand, the k-ω model has better performance near wall without requiring wall-

damping function but free stream results is sensitive to the arbitrary assumed values at the inlet 

boundaries.  
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          Then, Menter (1992a, 1992b, 1994 and 1997) suggested a hybrid model named as SST k-ω 

model, where he took the advantages of these two models. Near the wall he applied the k-ω model 

and away from the wall at the free stream fully turbulent region, the k-ε model was implemented. In 

the present study we also adopted the SST k-ω model for modeling turbulence. The model was 

implemented by selecting kOmegaSST in RASProperties dictionary of OpenFOAM. In bridge 

aerodynamic field a number of recent applications (Šarkić et al. 2012, Brusani et al. 2013, Nieto et 

al. 2015 and Patruno 2015) can be found using this turbulence model. The model is described below. 

 

          To improve the results at the location of adverse pressure gradient, wake of the body and to 

reduce the production of turbulence kinetic energy, the eddy viscosity was modeled as follows 

 

 

 
,

,max
21

1

SFa

ka
t

T







  (3.16) 

 

 

 

ijij
SSS 2   and ,

500
,

2
maxtanh

2

2*2















































 yy

k
F  (3.17) 

 

 

where νt is the kinematic eddy viscosity, S is the  modulus of Reynolds-averaged strain-rate tensor, y 

is the wall distance, F2 is a blending function. To model the eddy viscosity two more addition 

transport equations for turbulent kinetic energy (k) and turbulent specific dissipation rate (ω) were 

required. The equation for turbulent kinetic energy (k) was as follows, 
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In openFOAM, SST k-ω model was implemented in kOmegaSST.C file. The function divDevReff(), 

related to the eddy viscosity mentioned earlier was defined in kOmegaSST.C as, 

 

 

 . . . 

tmp<fvVectorMatrix> kOmegaSST::divDevReff(volVectorField& U) const 
 { 
     return 
     ( 
       - fvm::laplacian(nuEff(), U) 
       - fvc::div(nuEff()*dev(T(fvc::grad(U)))) 
     ); 
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 } 
 . . . 

 

 

The k-equation was implemented as follows, 

 

 

      . . .  

    ( 
         fvm::ddt(k_) 
       + fvm::div(phi_, k_) 
       - fvm::laplacian(DkEff(F1), k_) 
      == 
         min(G, c1_*betaStar_*k_*omega_) 
       - fvm::Sp(betaStar_*omega_, k_) 
     ); 
      . . .  

 

 

The equation for the turbulent specific dissipation rate (ω) was as follows, 
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This transport equation was coded in OpenFOAM in the following way, 

 

 

      . . . 

    ( 
         fvm::ddt(omega_) 
       + fvm::div(phi_, omega_) 
       - fvm::laplacian(DomegaEff(F1), omega_) 
      == 
         gamma(F1) 
        *min(S2, (c1_/a1_)*betaStar_*omega_*max(a1_*omega_, 

b1_*F23()*sqrt(S2))) 
       - fvm::Sp(beta(F1)*omega_, omega_) 
       - fvm::SuSp 
         ( 
             (F1 - scalar(1))*CDkOmega/omega_, 
             omega_ 
         ) 
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     ); 
      . . . 

 

 

all the terms a1, α, β*, β, σk and σω mentioned in the Eq.3.16 to Eq.3.21 are coefficients. Further 

details on the model can be found in Menter (1992a, 1992b, 1994 and 1997) and Menter et al. 

(2003).   

 

 

 

3.4    Finite Volume Method of Discretization 
 

 

In the last section we described the governing equations of unsteady RANS simulation. These 

equations are continuous partial differential equation and can‟t be solved analytically. Any standard 

discretization technique such as Finite Element Method (FEM), Finite Difference Method (FDM) or 

Finite Volume Method (FVM) is required to transfer those partial differential equations into discrete 

algebraic form to make them solvable.    

 

          In OpenFOAM Finite Volume Method (FVM) was implemented to discretize the governing 

equation of unsteady RANS as shown in the last two sections. In FVM the continuous partial 

differential equations are transformed into a set of discrete algebraic equations to solve them either 

adopting certain direct or iterative method. The process consists of two main steps: the discretization 

of the solution domain and the discretization of the governing equations. In the following section we 

briefly summarize the Finite Volume Method (FVM). The materials were extracted from Jassak 

(1996), Versteeg and Malalasekera (2007) and OpenFOAM (2015a). For further detail about the 

method and implementation technique interested readers are referred to Patankar (1980), Jassak 

(1996), LeVeque (2002), Ferziger and Perić (2002), Versteeg and Malalasekera (2007), Toro (2009), 

OpenFOAM (2015a) and OpenFOAM (2015b). 

 

 

 

3.4.1    Discretization of the Solution Domain 
 

 

The solution discretization involves both the time and the domain discretization known as temporal 

and spatial discretization, respectively. The spatial discretization is also known as grid generation or 

mesh generation. This determines the location of the nodes where the unknown solution variables of 

the governing equations will be evaluated in space and time. 

 

          In temporal discretization the time is divided into finite number of discrete intervals usually 

known as time steps. Depending on the solution strategy both the uniform or variable time steps can 

be used. The size of the time step is determined based on how frequent the solutions are required to 

grasp the natural phenomenon or based on courant number (Co) from stability point of view.    

 

          In spatial discretization the computational domain is decomposed into a finite number of 

discrete subdomains or regions called control volumes (CVs) along with the nodes where the 

solution of the governing equations are evaluated. Fig. 3.1(a) shows the planar view of the spatially 
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discretized system. The summation of all the control volume yields the computational domain. The 

control volumes don‟t overlap and numbered sequentially with specific procedure.   

 

          Fig. 3.1(b) shows a typical hexahedral control volume and its notation. The control volume is 

denoted as Vp and surrounded by a number of flat faces f. Each of this faces are attached to the 

neighboring control volumes. The face area vector Sf is located at the center of the corresponding 

face, pointing outward (nf) and possess a magnitude equal to the area of the face. The point P is the 

centroid of the control volume Vp and E, W are the centroid of the neighboring control volumes. The 

vector d represents the distance between the centroids of the two neighboring control volumes E and 

W. All the variables are calculated at these centroids i.e., collocated arrangement.    

 

 

 

3.4.2    Equation Discretization 
 

 

In FVM method, the integral form of the equation is used based on generalized form of Gauss 

Theorem to discretize the equation. The governing equation presented in section 3.2 and 3.3 can be 

written in a generic form of transport equation for a scalar property ϕ as follows, 
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here ϕ represents the transported quantity such as U, k or ω and Γϕ is the diffusion coefficient of the 

transported quantities. In FVM the transported equation are written in integral form to discretize the 

equation and apply the Gauss or divergence theorem. Hence, the generic equation can be rewritten in 

integral form in the following way,   
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(a) Planar view (b) Hexahedral control volume  

 

Figure 3.1: Concept of control volume and various notations adopted during discretization process  
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          Now, based on Gauss theorem this volume integral can be converted into surface integrals. 

According to gauss theorem the volume integrals of the divergence of a vector in a region inside the 

control volume can be expressed in terms of the integral of the outwards flux normal to the surface 

surrounds the control volume. Therefore, Eq. 3.23 can be rewritten as below   
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 (3.24) 

 

 

          This equation physically implies that the rate of change of transported quantity ϕ within the 

control volume VP is equal to the summation of rate of change of the convective and diffusive fluxes 

at the surface confines the control volume and the net rate of evolution of ϕ within the control 

volume. Now, we will go in detailed one by one each of these terms starting with the convective 

term. 

 

 

3.4.2.1    Spatial Discretization of Convective Term 
 

As can be seen from Eq.3.24 the convective term is a product of a surface integral. If we want to 

evaluate this term we need the value of transport property ϕ at the face of the control volume which 

is unknown. To obtain the surface value we need to approximate the distribution of transport 

properties on a face of the control volume and the nature of contribution of neighboring control 

volumes sharing that particular face.     

 

          We assumed that the transport property ϕ varies linearly over each face f of the control volume 

VP and may be presented by its mean value at the centroid of each face f. Based on this 

approximation we can now express the surface integral as a product of the transport quantity at the 

centroid of the face f and the face area. This approximation has second-order accuracy. Based on this 

approximation the convective term in Eq.3.24 can be presented as follows,  
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where F is the mass flux. Now we need a relation through which we can calculate the face center 

value of the transport property from the centroid value (P, E or P, W) of the control volume is known 

as interpolation scheme. There are a number of interpolation schemes available in the literature such 

as Upwind (UD) scheme, Central Differencing (CD) scheme, QUICK Scheme. Each of these 

schemes has their weak and strong points. Detailed can be found in Patankar (1980), Jasak 1996, 

LeVeque (2002), Ferziger and Perić (2002), Versteeg and Malalasekera (2007) and Toro (2009). UD 

scheme is very stable and doesn‟t yield any wigles but lower accuracy, whereas CD and QUICK 

have higher order accuracy having low stability. In the present study we utilized Total Variation 

Diminishing (TVD) scheme that has adopted the best of these two worlds.  

 

          The interpolated value of the transport property at the face centroid can be expressed as below, 
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where fx is the interpolation factor and can be defined as the ratio of distance fE and PE. Now, if we 

assume the distance between the centroids of two neighboring control volumes are uniform, i.e, d, 

then any kind of scheme and the nature of the scheme can be expressed by the appropriate function 

ψ(r) (Versteeg and Malalasekera 2007). Later, this function will be called as limiter function and can 

be expressed as follows,  
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Here, r represents the gradient ratio and for one dimensional flow from P to E it can be written as 

above. For UD scheme the ψ(r) is 0, which means the face centroid value is equal to its upwind sides 

control volumes centroid value (P). Similarly for CD scheme the value is 1. Now, a scheme to be 

stable, non-oscillatory and higher-order accurate it should possess monotonicity-preserving 

properties (Versteeg and Malalasekera 2007). The schemes having this monotonicity-preserving 

properties is so called Total Variation Diminishing (TVD) scheme.    

 

          The mathematical criteria of a scheme to be TVD scheme was given by Sweby (1984). 

According to sweby (1984) a scheme to be TVD: 

 

1) ψ(r)≤2r for 0<r<1 and, 

2) ψ(r)≤2r for r≥1. 

 

According to these criteria UD, CD and QUICK all of them are TVD for a particular range of 

gradient ratio (r). For example, CD is not TVD for a value less than 0.5 but becomes TVD for higher 

than that value. Therefore, we need an appropriate expression of ψ(r) i.e., limiter function that will 

convert these schemes to the TVD scheme for any value of gradient ratio (r).   

 

          Over the years a number of limiter functions have been developed by following Sweby‟s 

criteria. In OpenFOAM a variant of the Sweby Limiter (Sweby 1984) was implemented and that can 

be state as below, 
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In the present work we employed Central Differencing (CD) scheme with Sweby limiter function to 

ensure the monotonicity criteria is named as Gauss limitedLinear scheme in OpenFOAM. The 

sweby limiter function in OpenFOAM was implemented as follows,  

 

 

     . . . 

    { 

         scalar r = LimiterFunc::r 

         ( 

             faceFlux, phiP, phiN, gradcP, gradcN, d 

         ); 

         return max(min(twoByk_*r, 1), 0); 

     } 

       . . . 

 

 

3.4.2.2    Spatial Discretization of Diffusive Term 
 

As like convective terms, the diffusive term in Eq.3.24 can be also be written as in Eq.3.25. The 

diffusive term can be discretized as shown like Eq.3.30. 
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          The diffusion coefficient Γϕ at the face can be interpolated by Central Differencing (CD) 

scheme, i.e., with linear interpolation between the control volume VP and VE. as sketched in Fig.3.2. 

The basic concept of CD scheme in terms of face conductivity can be expressed as Eq.3.31. 
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fx is the interpolation scheme and becomes 0.5 when the CVs have a uniform size. In Eq.3.30 the face 

gradient term   f arises from the spatial discretization of diffusive term requires approximation. 

When the grid system is orthogonal, i.e., the vector d and S are parallel as shown in Fig.3.3(a), the 

gradient term can be computed as follows, 
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Figure 3.2: Variation of diffusion coefficient among neighboring CVs 

 

 

 
(a) Vector d and S on an Orthogonal grid 

 
(b) vector d and S on non-orthogonal grid 

 

Figure 3.3: Vector notation for orthogonal and non-orthogonal grids 

 

 

          However, this method can be applied for orthogonal grid only. For non-orthogonal grid like as 

Fig.3.3(b) special treatment is required. Various treatments can be found in the literature (Jasak 1996 

and Blazek 2003). Basically, the gradient term is decomposed into two parts, 
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The orthogonal contribution  
fO

 can be modeled in a number of ways (Jasak 1996); one of the 

robust ways is over-relaxed approach. In this approach the orthogonal contribution  
fO

  is 

modeled such that the contribution from ϕP and ϕE increases with the increase of non-orthogonality 

and can be expressed like below, 
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For the non-orthogonal contribution, the face interpolated value of   can be obtained by linear 

interpolation as like Eq.3.31. In this study the diffusive terms were discretized by second-order 

accurate Central Differencing schemes with non-orthogonal correction and implemented by selecting 

Gauss linear corrected scheme in fvSchemes dictionary of OpenFOAM. The detailed programming 

algorithm regarding this scheme can be found in gaussLaplacianScheme.C, correctedSnGrad.C and 

surfaceInterpolation.C files.  
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3.4.2.3    Spatial Discretization of Source Term 
 

In the governing equation not all the terms can be expressed in the form of convection, diffusion and 

temporal terms. The terms can‟t be expressed on those terms are expressed as source term, Sϕ(ϕ), 

which is a general function of ϕ. But it is important to linearize the source term before the actual 

discretization and can be conducted as follows, 
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here SC is the constant part of the source term and SP is the depended part depends on ϕ. Now, 

assuming similar approximation as for the surface integrals, i.e., ϕ varies linearly over the control 

volumes, the source term can be expressed as follows: 
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This approximation is exact either ϕ is constant or varies linearly over the cell, otherwise, it is a 

second-order accurate (Jassak 1996 and Ferziger and Perić 2002). 

 

 

3.4.2.4    Temporal Discretization  
 

Before starting the temporal discretization of the governing equation, we need to rewrite Eq.3.23 

considering the time derivatives. The Eq.3.23 can be rewritten as follow, 
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(3.38) 

 

 

Now, taking into consideration the assumption we made in the last sections and the output in 

Eq.3.25, Eq.3.30 and Eq.3.37, the Eq.3.38 can be expressed as like below, 
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This expression is known as the semi-discretized form of the transport equation (Hirsch 1991). This 

equation is discrete in space but continuous in time. In the preset study we discretized the unsteady 

term with a second-order accurate implicit method, namely, Backward Differencing (BD) method to 

discretize the complete transport equation with second-order accuracy. The method was 

implemented by choosing backward for ddtSchemes in fvSchemes dictionary of OpenFOAM. The 

method is described below. As the method is implicit, hence it uses both the obtained and the desired 
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value of the variable ϕ. This method utilize total three time levels to calculate the temporal derivative 

as mentioned below, 

 

 
ttn   2
  

 
tn  1
 (3.40) 
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          Now the time level n-2 and n-1 can be expanded by using Taylor expansion around n and we 

get 
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and 
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Adding these two equations and we can obtain the second-order approximation for the temporal 

derivative after some simple manipulations as follows, 
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(3.43) 

 

 

It is to be noted that the volume integral of the unsteady term in Eq.3.39 can be written to 
n

t













based on the assumption we made before that the variable varies linearly around the point P in space 

and time. This implicit time scheme can tolerate larger time step than the explicit time scheme, 

where Courant number (Co=(U·∆t)/∆x) must be less than 1. In the present study the time step (∆t) 

was determined based on the Courant number value (Co). In most of the cases the Courant number 

was near about 0.5, yet in some cases it reached a value of around 0.7. The detailed programming 

algorithm of the Backward Differencing (BD) method can be found in backwardDdtScheme.C file in 

OpenFOAM. 

 

          Finally, neglecting the temporal variation in the face fluxes and derivatives we can write the 

complete discretized transport equation having second-order accuracy as similar to Eq.3.44.   
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It is worthy to mention that this time derivative expression is valid only for constant time step (∆t) 

and in this research all the simulations were carried out with constant time step (∆t) strategy.  

 

 

 

3.5    Boundary Conditions 
 

 

Boundary conditions are required to be defined for the boundaries of the computational domains and 

they appear as source terms. Various type of boundary conditions are implemented in bluff body 

aerodynamics field those are well summarized in Haque et al. (2013). The following boundary 

conditions are used in the present work: 

 

          Zero-gradient Boundary Condition: This boundary condition can be implemented in 

OpenFOAM by typing zeroGradient in the input files. The solution gradient is set to zero at the 

boundary. This is a Neumann-type boundary condition, i.e. ∂ϕ/∂n=0.  

 

          Fixed-value Boundary Condition: This boundary condition can be implemented by writing 

fixedValue in the input files of OpenFOAM. A specific value of the solution is set at the boundary. 

An initial value is required when this kind of boundary conditions are enforced. This is a Dirichlet-

type boundary condition, i.e., ϕ=b.  

 

          Slip Boundary Condition: This boundary condition can be carried out simply by typing Slip in 

the input files. The flow is assumed to pass along the boundary and can‟t pass through it, i.e., u=U,  

v=0 and ∂u/∂y=0.    

 

          A non-slip type boundary condition, i.e., fixed-value (u=0 and v=0) for velocity and zero-

gradient for pressure were imposed on the bluff body or bridge deck surface (bridge deck). A fixed-

value boundary condition for velocity (u=U and v=0) and zero-gradient boundary condition for 

pressure were implemented at the inlet of the domain, while zero-gradient for velocity and fixed-

value for pressure (P=0) were applied at the outlet of the domain. A slip boundary condition was 

imposed at the top and bottom of the domain wall.  

 

 

 

3.6    Procedure of Solution  
 

 

In this section we discuss the solution strategy adopted for the solution of the discretized governing 

equation. The general form of the governing equation that was discretized in the last section requires 

additional processing to obtain discretized Navier-Stokes equation for solution. There are a number 

of issues need to be considered.  
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          If we substitute U as a transport property in the discretized convective term in the Eq.3.25, we 

obtain, 
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Here, F, ap and aN are function of U. By observing this equation, we can understand that the velocity 

is being transported by itself. Therefore, the discretized convective term would be a quadratic 

function of velocity and as a result the system of algebraic equation would be non-linear in nature. 

Further, as the mass flux F is required to satisfy the continuity equation (Eq.3.5), hence the 

continuity and momentum equation will simultaneously increase the non-linearity even more.  

 

          This issue can be coped with either by using a non-linear solver or linearizing the convective 

term. However, implementation of non-linear solver is complicated and computationally quite 

expensive; therefore the convective term is linearized. The linearization means that mass fluxes will 

be calculated from an existing velocity field satisfying the continuity equation. As the fluxes are 

calculated from the existing velocity field that means information is lagged. To grasp the non-

linearity and to reduce the error, small time steps should be used, so that variation between the 

consecutive solutions remains small and becomes possible to lag the non-linearity (Jassak 1996).  

 

          Another aspect is that pressure and velocity is coupled in the Navier-Stokes equations. We 

need some iterative procedures to solve this coupled system. In this work, we employed PISO 

algorithm (Issa 1986) for static simulation named as a PisoFOAM in OpenFOAM and PIMPLE 

algorithm for dynamic simulation named as a PimpleDyMFOAM in OpenFOAM. Further, as a part 

of the iterative procedure, we need one additional pressure equation. Since, due to pressure velocity 

coupling the momentum equation demands an existing pressure field. If the pressure from the initial 

guess or the pressure solution of previous time step is used, then the velocity solution of the 

momentum equation doesn‟t satisfy the continuity equation demanding addition pressure equation. 

Furthermore, we need to adopt a solution strategy for solving the matrix of linear algebraic equation 

obtained by discretization.  

 

          In the following sections these aspects are discussed briefly, elaborate derivation and 

background can be found in Patankar (1980), Jassak (1996) and Versteeg and Malalasekera (2007). 

First, the discretized pressure and Navier-Stokes equations are presented. Then, the solution strategy 

adopted for solving the matrix of linear algebraic equations is discussed. Finally, the solution steps 

of the iterative method, namely, PISO algorithm for solving the coupled Navier-Stokes equation 

system is presented.       
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3.6.1    Discretized Pressure and Navier-Stokes Equation 
 

 

The momentum equation can be written in the semi-discretized form in order to derive the pressure 

equation, 
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where ap and aN are the are the diagonal and off-diagonal coefficients respectively. ∆P is the 

pressure gradient and H(U) consists of transport part, source part of the transient term and the source 

terms excluding the pressure gradient. Hence, this is a function of present velocity (U) and the 

velocity of the previous time level UO (for backward differencing both of UO and UOO).  

 

         Now, Eq.3.46 can be solved to obtain the cell center (P, E, W) velocity by dividing with aP, 

i.e., 
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The velocity at the cell face can be found from the cell centers through interpolation as below, 
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During solution time, this equation will also be utilized to calculate the face fluxes. The discretized 

continuity equation can be written as follows, 
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f

f
 (3.50) 

 

 

          Now, if we substitute Eq.3.49 into Eq.3.50 and after simple manipulation we can find the 

discretized pressure equation, 
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          Finally, discretized Navier-Stokes equation system can be written as follows, 

 

 

momentum equation, 
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pressure equation, 
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and the face fluxes F, we mentioned in the previous section were calculated from Eq.3.54, 
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3.6.2    Solution of the Algebraic Equation 
 

 

In the last section discretized pressure and Navier-Stokes equation was derived. As can be seen the 

pressure and momentum equations are coupled. We will introduce a segregated method to decouple 

the equation and to obtain a converged solution of the system of equations. However, before that we 

need a matrix solver that will solve each of those discretized algebraic equation over the complete 

flow domain. In the present study we adopted iterative methods rather than direct methods, i.e., 

Gauss elimination, LU decomposition etc. as they are efficient to solve the matrices of equations. 

The pressure equation was solved by employing Geometric-algebraic multi-grid (GAMG) solver 

with Gauss-Seidel smoother and all other equations of transport properties such as, U, k or ω were 

solved by means of Preconditioned bi-conjugate gradient (PBiCG) solver. In the following section 

we introduce the basics of both of these methods. For detailed of the methods reader are referred to 

Hackbusch and Trottenberg (1982) Wesseling (1992), and Briggs et al. (2000) for GAMG method 

and Fletcher (1976), Shewchuk (1994) and Press et al. (2007) for PBiCG method. 

 

          Multi-grid method like, GAMG is an efficient technique to solve linear or non-linear systems 

of discretized equation. The method is consists of a basic iterative scheme called smoother (Gauss-
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Seidel) and a coarse grid corrector. The smoother (Gauss-Seidel) on its first few iterations can 

remove the high frequency error, yet the low frequency errors are more persistent and convergence 

requires O(N2) iteration in a fine grid (So called multi-grid level), that is unbearable. Hence, the 

solutions are mapped into coarse grid, as a result low-frequency error of fine grid becomes high-

frequency-error in a coarse grid and can be removed easily.  

 

           In this way only a few iterations are required before changing from fine to coarse and coarse 

to fine and with a fixed number of iterations the method can diminish the residual very fast 

increasing the accuracy of the solution. A general schematic view of the method is drawn in Fig.3.4. 

The method was implemented by typing GAMG in fvSolution dictionary of OpeFOAM. The detailed 

programming algorithm can be found in GAMGSolver.C, GAMGSolverAgglomerateMatrix.C, 

GAMGSolverInterpolate.C and GAMGSolverSolve.C files in OpenFOAM.  .      

 

          Preconditioned bi-conjugate gradient (PBiCG) is a popular iterative method for solving a 

system of linear algebraic equations forms asymmetric matrix. Basically, the method searches the 

solution of a system of equations though an iterative process and reaches the final solution by the 

conjugate directions. These conjugate directions (search directions) are the conjugate of the residuals 

that is preconditioned with a proper perconditioner. By preconditioning, the original system of 

equations is transformed into a new system (preconditioned system) to increase the convergence and 

the new system (preconditioned system) is much easier to solve than the original system of 

equations. The method reaches the solution utmost at n iterations if the system contains n liner 

equations with n unknowns.  

 

          If we consider a system of linear equations as Aϕ=b and starts with an initial guess of solution 

xo having an initial residual ro, then the initial search direction is po that is determined based on the 

initial residual with a proper preconditioner. At each iteration, residual is calculated and at k-th 

iteration, the residual rk (rk=b-Aϕk) is orthogonal to the Krylov subspace generated by b. The 

solution at k-th iteration, ϕk, is the product of the last iteration plus a constant multiplication of the 

last search direction and continues until the residual reaches the set criteria. The detailed procedure 

and the expressions can be found in Fletcher (1976), Shewchuk (1994) and Press et al. (2007). We 

employed the PBiCG method as a solver by typing PBiCG in fvSchemes dictionary of OpenFOAM. 

The programming algorithm of PBiCG can be found in PBiCG.C file within OpenFOAM.  

 

 

 

3.6.3    Pressure-Velocity Coupling 
 

 

In last two sections we derived the discretized pressure equation, Navier-Stokes equation, described 

the matrix solver for solving the set of algebraic equation and before that we discretized the other 

transport equations. Now, it is possible to solve this coupled system of equations by an appropriate 

solution technique. In the present study we adopted PISO algorithm for static simulation and Pimple 

algorithm for dynamic simulation. PISO algorithm is a segregated approach, where equations are 

solved in a sequence and was proposed by Issa (1986). Detailed can be found in Issa (1986) and 

Versteeg and Malalasekera (2007). The main procedure of the transient PISO solver adopted in 

OpenFOAM for incompressible turbulent flow is briefly presented below: 

 

1) Initialize the flow field for all variables and setup the boundary conditions.  
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Figure 3.4: General procedure of GAMG method 

 

 

2) Start the calculation for a new time step. 

 

3) Solve the discretized momentum equation (Eq.3.52) for approximation of the new velocity field 

by using pressure field data of previous time step or by initial value. This step is known as 

momentum predictor. 

 

4) Calculate a new set of conservative face fluxes satisfying the continuity equation (Eq.3.54). 

 

5) Solve the pressure correction equation (Eq.3.53) and repeat for the assigned number of non-

orthogonal corrector steps (nNonOrthogonalCorrectors).  

 

6) Correct the velocity field and repeat the PISO loop from step 4 until the prescribed number of 

PISO loop.  

 

7) Use this pressure and velocity solution for the current time step and also consider the new set of 

fluxes.   

 

8) Solve the other transport equations (k and ω) discretized similar to Eq.3.44 and update all the 

turbulent quantity and the eddy viscosity.   

 

9) Update the time and start the calculation for a new time step from step 2 until the final time is 

reached.  

 

 

          In OpenFOAM, the number of times the PISO loop will be run is directly assigned by a 

parameter called nCorrectors. We set a nCorrectors number of 3. The PISO algorithm was activated 

by selecting PISO in fvSolution dictionary of OpenFOAM. Detailed programming algorithm of PISO 

algorithm can be found in pisoFOAM.C file.   

 

          For dynamic simulation to attain the pressure velocity coupling, we employed PIMPLE 

algorithm, which is a variant of PISO algorithm. In case of PIMPLE algorithm there is an additional 

outer loop (Step 3 to Step 8 of PISO steps) on PISO algorithm. In this loop the final value of the last 

iterations is considered as an initial guess and repeats the calculation from Step 3 to Step 8 of PISO 

algorithm. This outer loop is called nOuterCorrectors. By means of that much larger time steps can 

be implemented when PIMPLE algorithm is adopted to attain pressure-velocity coupling. We 

assigned a nOuterCorrectors number of 2 for PIMPLE algorithm.   
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3.7    Handling Moving Boundaries  
 

 

In the presented study along with the static simulation, forced vibration dynamic simulation was also 

conducted to extract the dynamic properties such as aerodynamic derivatives and damping of the 

bridge deck. In forced vibration simulation the bridge deck was assigned to oscillate either in 

heaving or torsional mode at a constant frequency and amplitude. Hence, the boundary of the bridge 

deck was required to move during the time of simulation. Various methods are available to move the 

boundaries of a moving body (Tezduyar et al. 2008). We adopted Arbitrary Lagrangian-Eulerian 

(ALE) (Ferziger and Perić 2002 and Donea et al. 2004) method to accommodate the movement of 

the bridge deck boundary.  

 

          In previous sections we introduced the Eulerian approach, where the grid was fixed in space 

and the fluid flows through the grids. However, to simulate the movement of a particular boundary, 

Lagragian formulation is required where the grid moves along with the fluid properties. ALE 

formulation combines both the Eulerian and Lagrangian method, the Lagrangian part allows the grid 

to move and deform according to the movement of the moving boundary, where the Eulerian part 

focuses on the fluid flow through the deformed grids. In the following section we briefly introduce 

the modified transport equation for the moving boundaries and the discretized form of the equations 

those were summarized from Tuković (2005), Tuković and Jasak (2007), Jasak and Tuković (2010) 

and Tuković and Jasak (2012) for details.   

 

 

 

3.7.1    Arbitrary Lagragian Eulerian Approach 
 

 

Recall Fig.3.1(b) and Eq.3.23. For a general transport property ϕ, the conservation equation for a 

moving control volume VP surrounded by a surface Sf can be rewritten as follows,   
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where n is the outward pointing unit normal vector on the boundary surface, US is the velocity of the 

moving boundary surface. A relationship is required between the rate of change of the volume VP 

and the velocity of the boundary surface. It was defined by so-called Space Conservation law (SCL) 

or Geometric Conservation Law (GCL) (Thomas and Lombard 1979, Lesoinne and Farhat 1996 and 

Demirdžić and Perić 1988): 
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          This equation implies that the volume swept by the cell boundary at a time step is equal to the 

change in volume of each control volume. For stable simulation it is always required to be satisfied 

Eq.3.56, violation of Eq.3.56 may endanger the equation due to generation of artificial mass sources 

that accumulates with time.  

 

          Now, Eq.3.55 can be discretized by second-order Finite Volume Method (FVM) as already 

discussed earlier, where surface integrals are transform into the sums of the face integrals with 

proper approximation and volume integrals to second order accurate using the mid-point rule. By 

using second-order accurate Backward time scheme for temporal discretization, the Eq.3.55 in the 

discretized form for control volume VP can be written as below (Tuković 2005 and Jasak and 

Tuković 2010), 
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where the subscript P denotes the cell values, f is the face centered values and the superscripts n, n-1 

and n-2 are, respectively, the new, present (old) and past (older) values. The mass flux through the 

face is given by 
ffff Snm U  and the cell face volume change by 

fSfff SnV U , here Usf is the 

cell face velocity. The mass flux can be found as a part of the solution ( m ) by satisfying the 

conservation of mass. The cell volume (
n

P
V ,

1n

P
V  and

2n

P
V ) and the volumetric face flux (V ) can be 

determined from geometric consideration and by satisfying the Space Conservation Law (SCL) 

(Demirdžić and Perić 1988).  

 

 

 

3.7.2    Grid Deformation Solver 
 

 

In ALE grid moving approach, the computational grid moves and deforms to follow the movement 

of the moving boundary in every time steps of transient simulation. To ensure the quality and 

validity of the grid, it is important to move the internal points (fluid) along with the movement of the 

moving boundary points. 

 

          There are various methods available and adopted in OpenFOAM to calculate the motion of 

internal points. In previous versions of OpenFOAM both the Laplace equation with variable 

diffusivity (Lohner and Yang 1996) and Solid Body Rotation Stress equation (SBR Stress) (Dwight 

2004) were implemented. However, both of these methods can maintain high quality of the grid for 

limited boundary rotation only. Currently, OpenFOAM has implemented Radial Basis Function 

(RBF) (Bos 2009) to calculate the internal motion of the points by maintaining high quality of the 

grid.  

 

          RBF interpolation method uses an interpolation function (S(X)) to calculate the displacement 

of the internal points for a given movement of the boundary points. Rather than using partial 

differential equation, a purely algebraic formulation was used to make the grid motion technique 
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faster and more robust. The interpolation function describes the displacements of all the 

computational grid points. The RBF interpolation formula can be mentioned as below, 

 

 

     ,
1

XqXXXS
b

j

N

j

bj




  (3.58) 

 

 

where X is the interpolate location, Xbj (xbj, ybj and zbj) is the known displacements of the boundary 

points, Nb is the number of boundary points, q is a polynomial, ϕ is a given basis function as a 

function of the Euclidean distance X , γj is a coefficient that is used to define the polynomial q. 

Based on small number of control points on the moving boundary, the RBF interpolation is derived. 

This control points are used as “known point data”. Then by exploiting the RBF interpolation in 

Eq.3.58, the displacements of all the other grid points are calculated. Further details of the RBF 

interpolation and the choice of radial basis function can be found in Bos (2009). The algorithm can 

be found in sixDoFRigidBodyMotionSolver.C within OpenFOAM.   

 

 

 

3.7.3    Assigning Boundary Movement 
 

 

In last two sections, the concept of moving grid was introduced, where if the displacement of the 

control points on the moving boundary is known then the computational domain can absorb that 

displacement by moving the grid points and changing the volume of the grid. Now, we need to give 

the desired displacement on the target moving boundary.  

 

          In this study, we aimed to conduct single degree-of-freedom forced vibration. We used an 

advanced solver that is capable of mesh morphing for six degree-of-freedom motion, when three 

dimensional simulation is conducted. The algorithm can simulate free vibration of target body if the 

geometry, mas, center of mass, moments of inertia, stiffness and damping properties are properly 

tuned. The algorithm demands one additional file in the Constant folder, namely, dynamicMeshDict 

file where the desired properties can be input. The algorithm imagines that the model is supported by 

springs. Usually, two types of springs are used, namely, linear spring and linear angular spring those 

controls the translational and angular movement of the body.      

 

          In this research, we considered two dimensional flow domain having a infinitesimally small 

dimension in the span-wise direction and intention was to conduct one degree-of-freedom forced 

vibration simulation. Hence, by assigning appropriate value in the Constrain option in the 

dynamicMeshDict file, we released only vertical heaving and torsional movement (recall Fig.2.4). 

During the time of simulation, the spring-supported model was allowed for two degrees-of-freedom 

vibration. If we denote the stiffness of the vertical linear spring as kε and angular spring as kα, the 

equation of motion (recall Eq.2.6 and 2.7) for per unit span length can be rewritten as:   

 

 

 ,2 tLkmm      (3 .59) 

  

 .2 tMhkII      (3 .60) 
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          As the simulation progress, the Lε(t) and Mα(t) are calculated by integrating the pressure over 

the bridge deck or bluff body surface. As the simulation time elapsed, Lε(t) and Mα(t) accumulates 

and tries to excite the body. However, the goal of the current study was to simulate the single 

degree-of-freedom forced vibration. To generate forced heaving and torsional mode vibration, target 

frequency (fε and fα) can be simulated by inputting appropriate stiffness value (kε and kα), the desired 

amplitude of vibration can be obtained by assigning initial displacement (modeled by adjusting 

restLength and angularMomentum) and the given amplitude can be maintained by making the 

damping zero in the corresponding direction in dynamicMeshDict file. To ignore the influence of 

Lε(t) and Mα(t) on vibration frequency and amplitude, a very large mass can be assigned to the 

modeled bridge deck section.  

 

          For example, when heaving mode single degree-of-freedom forced vibration was simulated, a 

quite large mass equivalent to the real bridge section was assigned to this scaled two dimensional 

model to ignore the influence of aeroelastic force, the linearSpring stiffness and restLength were 

tuned to simulate desired vibration frequency and amplitude, respectively and the vertical direction 

damping was set to zero. At the same time, the very large stiffness and damping values were set in 

the torsional direction. By following the same procedure the torsional mode single degree-of-

freedom forced vibration can also be generated. In, OpenFOAM the linear and angular spring was 

implemented in linearSpring.C and linearAxialAngularSpring.C files, respectively.    

 

          The dynamic simulation was activated by choosing PimpleDyMFOAM algorithm and typing 

pimpleDyMFoam in fvSolution dictionary of OpenFOAM. The main difference between the PISO 

and PIMPLE algorithm were discussed at the end of section 3.6.3 and demands one additional 

dictionary file, namely, dynamicMeshDict as discussed in the last section. Fig.3.5 shows a brief 

flowchart of PimpleDyMFoam algorithm.   

 

 

 

3.8    Computational Domain 
 

 

The above mentioned all the computations should be carried out within a finite computational 

domain. Special attention should be paid for selecting the size of the computational domain. From 

practical point of view, the domain should be as large as possible so that boundary of the domain 

doesn‟t affect the response around the target object. In past work this issue was investigated 

vigorously to reduce the uncertainty in the solution due to domain size. Detailed and clear guidelines 

can be found in the literature to set up the domain size. In a two-dimensional domain, there are three 

important parameters: i) the upstream distance (distance between the inlet and object, Xu), ii) the 

downstream distance (distance between the object and the outlet, Xd) and iii) the height of the 

domain (H). 

 

          An upstream distance (Xu) of 10 times of the height of the object (D) was recommended by 

Kelkar and Patankar (1992) in order to get an independent result. Later, Sohankar et al., (1995)  
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Figure 3.5: Solution steps of dynamic simulation in OpenFOAM 

 

 

found noticeable but not significant effect of the inlet distance on RMS lift force when it was varied 

from 7.5D to 11D. Similar recommendation can also be found in building aerodynamics field, where 

an upstream distance of 10D was recommended (Franke et al., 2004 and Tominaga et al., 2008). In 

this study we placed the inlet at 15D upstream of the bluff body by following the recommendation 

made by past research works. 

 

          The downstream distance also plays a vital role and influences the simulation result. A 

downstream distance (Xd) of 15D was recommended by Behr et al., (1995) based on simulation on a 

circular cylinder. Similarly, Cowan et al., (1997), Scaperdas and Gilham (2004) and Bartiz et al., 

(2004) suggested a downstream distance of 15D. However, downstream distance (Xd) is influenced 

by the type of the outlet boundary condition. It was shown by Sohankar et al., (1998) that a 

downstream distance of 15D is required for convective boundary condition (CBC), whilst a 

downstream distance of 25D is required for Neumann Boundary Condition (NBC). In the present 

study we placed the outlet at 25D downstream of the objet as Neumann-type boundary condition was 

incurred at the outlet of the domain.  

 

          The height of the domain should be selected based on the blockage ratio (D/H) and tried to be 

maintained it as low as possible. In building aerodynamics field the height of the domain was 

advised to maintain 6D or higher. Sohankar et al., (1998) investigated the influence of blockage ratio 
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on a square cylinder by changing from 5% to 2.5% and found a slight decrease (less than 1.5%) in 

mean drag, rms lift and strouhal number. It should be mentioned that based on the guidance of wind 

tunnel modeling the maximum blockage was suggested to be below 10% (Franke et al., 2007). We 

selected the domain height of 25D to lessen the influence of blockage ratio. Fig.3.6 shows the 

detailed size of the computational domain and incurred boundary conditions. It is important to 

mention that during the time of simulating bridge deck, an upstream distance (Xu) of 18D was 

maintained as shown in Fig.3.7.  

 

 

 

3.9    Grid System 
 

 

The open-source toolbox OpenFOAM has already been verified extensively in various past 

researches (Jasak 1996, Juretic 2004, Tuković 2005, Jasak et al. 2004, Tuković and Jasak 2007, Bos 

et al. 2009 and Jasak and Tuković 2010). What is left for uses is the accurate generation of grid 

system for the spatial discretization of the flow, as it is completely problem oriented. An accurate  

 

 

 
 

Figure 3.6: Important notations, domain size and the boundary conditions adopted in the present 

study for bluff body simulation 

 

 

 
 

Figure 3.7: Domain size employed for simulating flow around bridge deck 
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generation of grid system is also very important as it is one of the major sources of error in 

numerical analysis.  

 

          In CFD, a grid system needs to fulfill two important criterions to be an accurate and optimum 

grid system. Firstly, the first grid or cell height (y) away from the body should be at the viscous 

sublayer (for non-slip boundary condition) for an accurate modeling of the boundary layer flow, is 

known as near-wall treatment (Menter et al., 2002 and Franke et al., 2007). In bridge and bluff body 

aerodynamics fields also grids are generated by following this criterion (Bruno et al., 2010 and 

2012; Šarkić et al., 2012, Brusiani et al. 2013 and Nieto et al. 2015). In viscous sublayer, the viscous 

stress dominants over the Reynolds stress and situate where the non-dimensional wall distance (y+) 

is less than a value of 5 (Pope 2000) as shown in Fig.3.8. The y+ value can be defined as, 

 

 

,
*



yu
y   (3.61) 

 

 

where u* is the friction velocity, y is the first grid height and ν is the kinematic viscosity.   

 

          Secondly, there should be sufficient number of grids all through the domain to discretize the 

flow such that the solutions converges and reaches the asymptotic range of convergence. To find the 

first grid height (y) that will be within the viscous sublayer (y+<5) and to find the number of grids all 

through the domain to have a converged solution, requires number of trials. Basically, the grid 

convergence test is carried out to generate accurate and optimum grid system where grids with 

various sizes and numbers are tested to find the best one.  

 

          Nevertheless, the conventional grid convergence test is a lengthy and time consuming 

procedure that requires huge computational efforts. Jinyuan et al., (2006) also mentioned that in a  

 

 

 
 

Figure 3.8: Concept of near-wall treatment and various important notations in grid system 
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CFD project majority of the time is dedicated for the generation of a successful grid system. 

Specially, for the beginner or user having less experience it takes prolonged time to obtain an 

accurate and converged grid system. Therefore, CFD needs to pass though the bottleneck like 

generation of accurate and optimum grid system for spatial discretization of the flow without much 

effort. 

 

          Considering aforesaid issues, in this work a strategy was proposed to generate an efficient and 

optimum grid system for yielding accurate result without much effort for two-dimensional bluff 

bodies. First, in the following section the strategy is proposed to generate the efficient grid system 

easily and promptly. Then, the strategy is demonstrated and checked by generating grid system for a 

square cylinder of side ratio (R=B/D) of 1. Solutions were also compared with past experimental 

works to check the accuracy of the results obtained from the grid system generated based on the 

proposed strategy. After that, the strength and efficiency of the proposed strategy is reconfirmed by 

generating grid for an elongated rectangular cylinder of side ratio (R) of 5 by comparing the solution 

with past experimental work.  

 

 

 

3.9.1    Proposed Strategy to Generate Grid System 
 

 

To generate an efficient and optimum grid system for two-dimensional bluff bodies, one needs to 

assure appropriate near-wall treatment (y+<5) and sufficient number of grids all through the domain 

to resolve the flow. To fulfill these criteria, we selected widely used and numerically efficient 

structured non-uniform grid system (Casey & Wintergerste, 2000; Menter et al., 2002; Ferziger & 

Perić, 2002). This type of grid can be generated by selecting a first grid height (y) near the object and 

a growth factor (GF=yn+1/yn) that is used to increase the grid size gradually in all direction away 

from the object as shown in Fig.3.8.  

 

          Our proposed strategy was, the first grid height (y) can be determined based on near-wall 

treatment such that it lies in the viscous sublayer (y+<5) and the growth factor (GF) can be selected 

such that the solution reaches the asymptotic range of convergence. One needs to know these two 

parameters to generate an accurate and converged grid system: i) the first grid height (y) and ii) the 

growth factor (GF).  

 

          Now, to make this strategy applicable, quick and smart, we needed further consideration that 

how to determine the first grid height (y) that would yield a desired y+ value (<5) without much trials 

and how to determine the value of growth factor (GF) that will yield a converged solution. In the 

following section we discuss these issues one by one in details.  

 

          First, we derived an equation to initialize the first grid height (y) in terms of dimension of the 

object (B), fluid properties (U, ρ and υ) and y+ value to reduce the number of trials. Then, we tried to 

find the appropriate value of growth factor (GF) that will yield a converged solution when the first 

grid (y) lies in the viscous sublayer. All the simulations were conducted for a bluff body of square 

cylinder (R=1). 
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3.9.1.1    Equation for Initialization of First Grid Height (y) 
 

As we already know, to fulfill the near-wall treatment the first grid height (y) should be in the 

viscous sublayer and we can confirm this if the grid possess a y+ value smaller than 5. But to get this 

target wall y+ value we need trials on grid by changing the first grid height (y) away from the body to 

get the target y+ value. An equation can be derived very easily for initializing the first grid height (y) 

to make easier and faster the procedure of finding the desired first grid height (y). Through this 

equation the first cell height (y) can be related with the characteristics length of the body or object in 

the flow direction (B), Reynolds number (ReB=UB/υ) and y+ value of the grid. The equation can be 

derived as follows,  

 

 

,
*u

y
y




  (3.62) 

 

 

where, y is the first cell height, μ is the dynamics viscosity of fluid, u* is the friction velocity, and 

can be given by, 
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wu   (3.63) 

 

 

where, τw is the wall shear stress and can be expressed as, 

 

 

,
2

1 2UC
fw

   (3.64) 

 

 

where, U is the free stream velocity and Cf is the coefficient of skin-friction.  

 

          Now, we require a general expression of Cf that will work well for most of the time. Various 

expressions of Cf are available depending on the circumstances. We thought the expression of skin 

friction coefficients (Cf) for a flat plate under turbulent boundary layer would be the most suitable 

and versatile. In the literature, various equations of skin friction coefficients (Cf) for a flat plate can 

be found. We considered three established equation of skin friction for a flat plate under the 

turbulent flow to make comparison among them and choose the most appropriate one. The 

expressions were as follows,  

 

 

,0592.0 5
1

 eBf RC  (3.65) 

  

,074.0 5
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,0307.0 7
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 eBf RC  (3.67) 



 
 
Governing Equation, Numerical Method, Grid and Validation                               Page | 55 

 
 

where, ReB is the Reynolds number. Eq.3.65, 3.66 and 3.67 were given by Schlichting (Schlichting 

1979), Prandtl (Prandtl 1927) and Falkner (as cited in Loitsyanskiy 1995). Now, putting the 

expression of friction velocity (u*), wall shear stress (τw) and skin friction coefficients (Cf) in Eq.3.62 

and after some simple manipulations the following three equations can be found, 

 

 

,81.5 9.0 
eB

RByy  (3.68) 

  

,19.5 9.0 
eB

RByy  (3.69) 

  

.07.8 929.0 
eB

RByy  (3.70) 

 

 

          Finally, an equation for initializing the first grid height (y) is derived, relating the 

characteristic length (B), y+ value and Reynolds number (ReB). Using any of these equations, one can 

easily predict the required first grid height (y), as all the right hand side quantities are known. 

Similar type of equation can also be found in various online based CFD discussion forums such as 

the CFD-Online (2015). However, in the present study different expressions of skin friction 

coefficient (Cf) were used resulting new equations and their performance of predicting the first grid 

height (y) in bridge and bluff body aerodynamic field was also explored which was not done 

previously. In the following section the relative performance of the derived equations were checked 

that how accurately they can predict the first grid height (y) and to choose the most appropriate one. 

 

 

3.9.1.2    Performance of the Obtained Equations 
 

If the obtained equations work for bluff section, then the equations should also work for elongated or 

streamlined section, as the expression of flat plate skin friction (Cf) was utilized to derive them. 

Hence, to check the performance of the equations, we considered the square cylinder (R=1) and 

generated three grids having different y+ values for the square cylinder (R=1) by changing the first 

grid height (y) at a Reynolds number (ReB) of 1.22x104. An arbitrary but small growth factor (GF) of 

1.05 was selected for all these grids to increase the grid size gradually away from the body. The grid 

number (n1=B/2y ; n2=D/2y) along the perimeter of the body was determined by dividing the 

corresponding length of the body by twice the size of the first cell height (2y), this implies all the 

first grid elements near the cylinder were rectangular in shape. Fig.3.9 shows the considered grid 

system for the square cylinder (R=1). 

 

          Table 3.1 shows the first grid height (y) and the obtained y+ values for the three considered 

grid systems. The average y+ value of grid 1 lay well within the viscous sublayer, for grid 2 also it 

lay within the viscous sublayer and for grid 3 the value lay just outside the range. Then, this obtained 

y+ value was used as an input to the obtained equation to calculate the first grid height (y) and 

compared with the required first grid height (y) to check the performance of the obtained equation. 

Nevertheless, we decided to utilize the maximum y+ value as an input to the equation instead of 

average y+ value to obtain a conservative result.  

 

          Table 3.2 shows the required first grid height (y) and the first grid height (y) calculated by 

using the obtained three equations. As can be seen for the third grid system (G3), when the first grid 

(y) is laid just outside the viscous sublayer (y+<5), then all the three equations provided conservative 

results. On the other hand, when the first grid (y) is laid in the viscous sublayer, they underestimated  
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Figure 3.9: Considered non-uniform grid arrangement to discretize the flow around square cylinder 

 

 

Table 3.1: Properties of the considered grids having various y+ values for square cylinder (R) of 1 at 

ReB=1.22x104 

 

Grid Name 
Required First grid 

Height (y/d)  

Obtained y+ value 

Minimum Average Maximum 

G1 0.004 0.412 1.876 5.139 

G2 0.0065 0.831 2.926 6.692 

G3 0.015 1.831 5.700 10.64 

 

 

Table 3.2: Comparison in between the required first grid height (y/d) and calculated first grid height 

(y/d) from the obtained equations 

 

Required 

(y/D) 

 

Input Parameters of the 

Equations 
Calculated (y/D)form the Equation 
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(B/D) 
  9.0/81.5
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

eB
RDBy
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  9.0/19.5

/
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

eB
RDBy

Dy
 

  929.0/07.8

/




eB
RDBy

Dy
 

0.004 5.139 

1.22x104 1 

0.0063 0.0056 0.0066 

0.0065 6.692 0.0082 0.00729 0.00863 

0.015 10.64 0.0129 0.01160 0.01373 

 

 

a bit the first grid height (y). The variation is usual, as the considered shape is too bluff in shape. 

However, the second equation (Eq.3.69) provides the closest prediction. This implies that the 

equation derived by using the skin friction coefficients given by Prandtl (1927) would ve the suitable 

one to initialize the first grid height (y) for bluff bodies.  

 

          Therefore, one can now initialize the first grid height (y) directly by using the obtained 

equation (Eq.3.69) to place the first grid in the viscous sublayer (y+<5) by choosing a y+ value near 

about 5 as an input to the equation (Eq.3.69) and this will reduce the number of trials significantly. 
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In case, users want to keep the maximum y+ value well within the viscous sublayer, one can even use 

much smaller value than 5 as an input to the equation to initialize the first grid height (y). From this 

section we obtained an equation to predict the first grid height (y), now we need to know the value of 

growth factor (GF) to expand the grid gradually away from the body to produce a converged 

solution. In the next section the influence of growth factor was discussed in detail. 

 

 

3.9.1.3    Influence of Growth Factor (GF) 
 

In finite volume method, the grid system is very crucial to get accurate results. The grid should be 

expanded gently in regions of high gradients, to keep the truncation error small. Franke et al., (2007) 

and Tominaga et al., (2008) recommended a growth factor (GF) of 1.3 to avoid numerical error in 

regions of high gradient. Scaperdas and Gilham (2004) and Bartiz et al., (2004) even recommend a 

smaller growth factor (GF) of 1.2 to expand the grid. However, these recommendations were based 

on the criteria to avoid truncation error in high gradient regions. Along with this, there also should 

be sufficient number of grids all through the domain so that, the solution reaches the asymptotic 

range of convergence and important physical phenomena can be captured.  

 

          One can fulfill these criteria by choosing an appropriate growth factor (GF). Nevertheless, the 

value of growth factor (GF) requires producing a converged solution depends on the first grid height 

(y). For smaller first grid height relatively larger growth factor (GF) will be sufficient to produce a 

converged solution, yet for larger first grid height (y) smaller growth factor (GF) will be required to 

converge the solution. 

 

          We already discussed that to fulfill the near-wall treatment, the first grid should be in the 

viscous sublayer (Menter et al., 2002 and Franke et al., 2007) and this can be achieved if the grid 

possess a y+ value of less than 5 (Pope 2000). Further, it was also known that we require smaller first 

grid height (y) to achieve smaller y+ value. Therefore, if we can determine the growth factor (GF) 

requires to have converged solution based on larger first grid height (y) that would be conservative 

and also applicable for the smaller first grid height (y).  

 

          As a result, the influence of growth factor (GF) was investigated on the square cylinder (R=1) 

for the second grid (G2) considered in the previous section, as the maximum y+ value is near about 

5. The same Reynolds number (ReB) was utilized and three growth factors (GF- 1.1, 1.07 and 1.05) 

were considered much smaller than the existing recommended value (Franke et al., 2007; Tominaga 

et al., 2008; Scaperdas and Gilham 2004 and Bartiz et al., 2004) from numerical error point of view. 

The grid with a growth factor (GF) of 1.05 possessed a total 67,974 number of elements.  

 

          Table 3.3 shows the influence of growth factor (GF) on global parameters along with previous 

experimental and numerical result. As the growth factor (GF) decreased from 1.1 to 1.07 the 

variation of response decreases. For example, the rms of lift coefficient (CL') varies only2.9% 

((1.479-1.436)/1.479) when the growth factor altered from 1.07 to 1.05, yet for 1.1 to 1.07 it varied 

around 9.5%((1.635-1.479)1.635). Similarly, the Strouhal number (St) remained unchanged when the  

growth factor altered from 1.07 to 1.05. Further, the present simulation could reproduce the 

aerodynamic responses closer to the experimental work as compared to past numerical work.  

 

          The surface pressure coefficients (Cp) are plotted in Fig.3.10. This is an important 

aerodynamic parameter that is used to estimate the wind loading and explains the aerodynamic 

behavior of structures. As can be seen from Fig.3.10 that the growth factor (GF) doesn‟t have 

noticeable influence on the front (0-1) surface pressure coefficients (Cp), it basically influences the 
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Table 3.3: Influence of growth factor (GF) on aerodynamic characteristics of square cylinder (R=1) 

for G2 (Table 3.1) at ReB=1.22x104. Previous works: Shimada and Ishihara (2002) at Re=104, 

Sakamoto et al. (1989) at Re=5.5x104 and Okajima (1982) at Re=70-2x104 

 

 
Number of 

Element 
CD CL CL' St 

Current (GF -1.1) 30,331 2.182 0.0163 1.635 0.102 

Current (GF-1.07) 45,317 2.144 -0.0197 1.479 0.099 

Current (GF-1.05) 67,974 2.110 -0.0020 1.436 0.099 

Numerical (Shimada & Ishihara 2002)  2.043  1.423 0.139 

Experimental (Sakamoto et al. 1989)  2.236  1.469  

Experimental (Okajima 1982)     0.121 

 

 

 

 

Figure 3.10: Mean value of surface pressure distribution around square cylinder at ReB of 1.22x104. 

Experimental results are: Otsuki (1978) at ReB=7x104, Bearman & Obasaju (1982) at ReB=2x104; Lee 

(1975) at ReB=1.76x104 

 

 

top (1-2) and the back (2-3) surface pressure coefficients (Cp). Here also like global parameter, with 

the decrease of growth factor (GF) the difference among the responses also decreased. Specially, at 

the top (1-2) and back surface (2-3), the CP increased noticeably when the growth factor (GF) was 

decreased from 1.1 to 1.07, yet very small variation can be noticed when the growth factor (GF) was 

reduced from 1.07 to 1.05.  

 

          This implies that when the first grid height (y) lies within the viscous sublayer (y+≤5), by 

using a growth factor (GF) of 1.05 one can achieve the asymptotic range of convergence in solution. 

Even though, it is important to check by establish methodology that whether the grid has really 

reached the asymptotic range of convergence or not. Therefore, we adopted a standard and widely 

used methodology proposed by Roache (1998) to check the convergence of grid system.  
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          To apply the mentioned grid convergence method one should consider three grids and we 

already have three grids with total number of elements are 67,974 (1), 45,317 (2) and 30,331 (3) 

having different growth factor (GF). Then following the prescribed method, we considered two 

important indexes to check the convergence of solution. The first one was the finest grid relative 

error (e12) as follows, 

 

 

,
1

21

12


 
e  (3.71) 

 

 

where, ϕ is the solution of important variable. In our calculation we considered the mean surface 

pressure value as a ϕ.  

 

          Another considered index was the check for asymptotic range of convergence of the computed 

solution. It was calculated as follows, 

 

 

Asymptotic range of convergence = ,
12

23

Pre

e


 (3.72) 

 

 

Where, r is the refinement factor and p is the observed order of convergence calculated from the 

prescribed equation (Roache 1998). The grid solution will be at the asymptotic range of convergence 

if Eq.3.72 yields a value of 1. Fig.3.11 shows the two considered indexes for the square cylinder 

(R=1). As can be seen the maximum relative error (e12) for the finest grid (GF of 1.05) lay below 

3.55% and the solutions were in the asymptotic range of convergence. 

 

          We also compared the computed surface pressure with previous experimental work to confirm 

that the computed solutions are not only converged but also accurate. In Fig.3.10, at the first sight it 

can be judged that that present solution could reproduce the solution very close to past experimental  

 

 

 
 

Figure 3.11: Grid convergence indexes calculated based on mean surface pressure of square cylinder 
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work. Both the magnitude and the trend of the surface pressure coefficients (Cp) were in well 

accordance with past experimental work.  

 

 

 

3.9.2    Application of the Proposed Strategy  
 

 

In previous section we developed, demonstrated and checked the performance of the proposed 

strategy for a square cylinder (R=1). In this section we applied the proposed strategy to generate the 

grid system for an elongated rectangular cylinder of side ratio (R=5). We checked the performance 

of the proposed strategy by comparing computed results with past experimental results.  

 

          According to the strategy, the first grid height was initialized by Eq.3.69, assuming a 

maximum y+ value of 5.5 to obtain a grid having the average y+ value well below than 5 (lies in the 

viscous sublayer). Then, the grids were gradually expanded away from the cylinder with a growth  

factor of 1.05. The grid number (n1=B/2y ; n2=D/2y) along the perimeter of the cylinder was 

determined by dividing the corresponding length of the cylinder by twice the size of the first cell 

height (2y). Simulation was conducted at Reynolds number (ReB) of 6.1x104. Fig.3.12 shows the grid  

system having a total 1, 09,026 number of elements. 

 

          Table 3.3 shows the computed global parameter and obtained y+ for the rectangular cylinder of 

side ratio (R) of 5. As can be seen that the maximum y+ value is bit higher than the inputted one like 

in case of square cylinder, yet the average y+ value is well below than 5 as expected earlier. 

However, depending on the turbulence model, importance of the work and availability of high   

performance computing system, one can even initialize the first grid height (y) by using Eq.3.69 with 

much smaller y+ value to obtain a grid having maximum y+ less than 5 or 1. The computed global 

parameters also compared with past numerical and experimental works. At the very first trial, current 

computation reproduces the global parameter with reasonable accuracy. 

 

          The mean surface pressure coefficients are plotted in Fig.3.13 along with past experimental 

work. The current simulation could grasp the pressure distribution pretty accurately. In validation 

section results were validated with proper validation metric, will be discussed in the next section. 

Then, we tried to check whether the grid reaches the asymptotic range of convergence or not when a 

 

 

 
 

Figure 3.12: Considered non-uniform mesh arrangement to discretize the flow domain around the 

elongated rectangular cylinder (R=5) 
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Table 3.4: Aerodynamic characteristics of bluff body for side ratio (R) of 5 at ReB=6.1x104. Previous 

works: Mannini et al., (2010b) at Re= 105, Tamura and Ito (1996) at Re=104, Shimada and Ishihara 

(2002) at Re=104, Okajima (1982) at Re=70-2x104  

 

 
Obtained y+ 

CD CL CL' St 
Avg. Min. Max. 

Current 2.961 0.845 6.834 1.15 -0.0116 0.178 0.104 

2D RANS (Mannini et al., 2010)    1.15   0.103 

3D RANS (Tamura & Ito 1996)    0.98  0.15 0.101 

2D RANS (Shimada & Ishihara 

2002) 

   0.98  0.05 0.117 

Exp. (Okajima 1982)       0.109 

 

 

 
 

Figure 3.13: Mean value of surface pressure distribution around rectangular cylinder of side ratio (R) 

of 5 at ReB= 6.1x104. Experimental results are: Matsumoto (2005) at Re=1x105 (as cited in Mannini et 

al. 2010b); Galli (2005) at Re=2.1x105; Ricciardelli & Marra (2008) at Re=2.7x105 for  R of 5 

 

 

growth factor (GF) of 1.05 is utilized for this elongated cylinder. 

 

           Therefore, we generated two more grid systems having growth factor (GF) of 1.07 and 1.1. 

The three considered grids possessed a total 1,09,026 (GF-1.05), 72,616 (GF-1.07) and 48,124(GF-

1.1) number of elements. After that, we followed the same procedure as descried in section 3.3 to 

check grid convergence. Fig.3.14 shows the convergence indices. It depicts that the solution was in 

the asymptotic range of convergence and had a maximum relative error of the finest grid less than 

7%. For this elongated rectangular cylinder also we found that a growth factor (GF) of 1.05 can 

yields a converged solution when the first grid (y) lies in the viscous sublayer (y+<5). 

 

          This implies that the proposed strategy can be applied for generating grid system to obtain 

converged grid system in bridge and bluff body aerodynamic field. In the present study all the grid  
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Figure 3.14: Grid convergence indexes calculated based on mean surface pressure of rectangular 

cylinder (R=5) 

 

 

systems for various bridge deck sections and bluff bodies were generated by following this strategy. 

This saved the computational time and effort significantly.  

 

 

 

3.10    Validation 
 

 

A validation is a process through which it is assessed how closely or accurately the numerical model 

and setup can target predict the target or real responses. According to AIAA the definition of the 

term “Validation” is as follows:  

 

“The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of 

the model.” (AIAA 1998) 

 

          It is important to validate the numerical results before applying it for the target problem to 

attain some level of confidence and to ensure the reliability of the numerical model, setup, boundary 

condition and grid system those were adopted. In the present study our target was to investigate the 

shaping effects on aerodynamic response of bridge decks. Basically, steady state force coefficients, 

surface pressure, velocity distribution and flutter derivatives were evaluated. Therefore, we 

conducted both static and dynamic simulations for bluff bodies having various shapes and tried to 

validate the results by comparing with past experimental works. Normally, numerical results are 

compared with experimental or full scale data. However, in bridge and bluff body aerodynamics 

field the full scale data is quite rare, hence the current numerical results were validated by comparing 

with past experimental works.  

 

          When a validation study is carried out, it is always appreciable to check the level of validation 

or measure the quality of validation. Basically two main streams of validation procedures are 

adopted in the CFD field those were given by Stern et al. (2001a and 2001b) and Oberkampf and 

Trucano (2002). Both of these approaches are well established and widely used. According to the 

validation procedure by Stern et al. (2001a and 2001b) a number of experimental data sets are 
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required to estimate the uncertainty. Similarly, the validation procedure by Oberkampf and Trucano 

(2002) also requires a number of experimental data sets, yet the procedure can also be simplified 

where only single set of data is available and widen the area of applicability. Hence, in the present 

study we adopted the standard Validation Metric (VM) proposed and recommended by Oberkampf 

and Trucano (2002) to measure the level of validation of the numerical results where it is applicable. 

Essentially, we estimated the VM to measure the level of validation for mean and rms of surface 

pressure distribution. 

 

          The metric was simple and straightforward; it takes the average of the number of experimental 

results at the discrete probing points and constructs a continuous cubic spline function. Then, the 

difference of the numerical and experimental function is integrated all through the length to calculate 

the metric. The metric could have a maximum value of 1. A higher value near about 1 is expectable. 

However, the metric is conservative as it takes the average of experimental results. The considered 

validation metric was as follows, 
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and 
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N
x   (3.74) 

 

 

where, N is the number of experimental data set, xi is the discrete probing locations along the body 

surface, L is the length of the body, ϕ stands for numerical results and υ stands for the experimental 

results. The number of experimental data should be as high as possible to incorporate the influence 

of uncertainty. In the case of only one set of available experimental data, the uncertainty associated 

with the experiment can be ignored. According to Oberkampf and Trucano (2002) when there is no 

uncertainty or error in the experimental data the above mentioned equation can be simplified to the 

following one,  
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 (3.75) 

 

 

where, I is the number of discrete probing locations. If the VM is calculated based on Eq.3.75 for a 

set of experimental and numerical data, the metric will estimate how closely the numerical result 

matches with the experimental one. A VM having a value of 1 means the numerical results matches 

completely with the experimental one. 
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3.10.1    Static Responses 
 

 

Fundamentally, the mean and rms value of steady state force coefficients, Strouhal number (StB), 

surface pressure distribution, velocity field was utilized in the present study as a static response of 

the bridge deck. However, in the literature not much experimental data are available for the bridge 

deck section. Hence, along with bridge deck section, we also considered the bluff body section such 

as square cylinder and elongated cylinder to validate the numerical setup. If we can validate the code 

and numerical setup for bluff section, from analytical point of view that should also work for 

streamlined section like bridge deck with fairing.  

 

          Total five validations for various shapes and sections was conducted and included herewith. 

Grid was generated by following the strategy discussed in Section 3.9. The first grid height (y) was 

initialized by Eq.3.69 to place it in the viscous sublayer (y+˂5) and the grid was stretched away from 

the target body or bridge deck with a geometric progression of 1.05 in all direction. In static 

response we focused both the global and local flow parameters such as the mean and rms value of 

steady state force coefficients along with the surface pressure and the velocity distribution.   

 

 

3.10.1.1    Influence of Side Ratio (R) 
 

When the side ratio (R) of the sharp edged rectangular cylinders are altered the steady state force 

coefficients and Strouhal number (Std) exhibits an unique distribution. In bluff body aerodynamics it 

is often tried to simulate the side ratio effects on steady state force coefficients to evaluate the 

performance of the numerical setup (Tamura and Ito 1996, Shimada and Ishihara 2002 and Sohankar 

2008). We altered the side ratio (R) from 1 to 8 and calculated the mean and rms value of the steady 

state force coefficients. Simulations were carried out at a Reynolds number (ReB) varying from 

1.2x104 to 9.76x104.  

 

          Fig.3.15 illustrates the influence of side ratio (R) on mean drag (CD), rms of lift (CL) and 

Strouhal number (Std) and compares the current results with past experimental and numerical results. 

The current simulation could reproduce the trend and magnitude quite well. In this test the side ratio 

(R) was altered and that was also a kind of change in shape and current simulation results had very 

good coherence with past results. One point should be noticed that the experimental results are well 

scattered and the current results lie within the upper or lower bound of past results. In this section 

global response are checked for varying side ratio (R). Starting from the next section we concentrate 

for a particular section and explore its detailed responses.   

 

 

3.10.1.2    Square Cylinder (R of 1) 
 

Simulation was conducted for a square cylinder (R of 1) at a Reynolds number of 1.2x104. In 

section3.9.1.3 we already have presented the steady state force coefficients (Table3.3) and the mean 

surface pressures were compared with past experimental works (Fig.3.10). The magnitude of the 

validation metric (VM) calculated by using Eq.3.73 was shown in Fig3.10. As be seen the validation 

metric (VM) possess a value of 0.972, that is very close to unity.   
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(a) Mean drag force coefficient (CD) 

 

 

(b) rms of lift force coefficients (CL)  

 

 

(c) Strouhal number (StB) 

 

Figure 3.15: Influnce of side ratio (R) on steady state force coefficients and Strouhal number (Std). 

Experimental results are: Nakaguchi et al. (1968) at Re=105, Sakamoto et al. (1989) at Re=5.5x104, 

Okajima (1983) at Re=0.42x105, Otsuki et al. (1974) at Re=2.2x104-5.5x105 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

M
ea

n
 D

ra
g

, 
C

D

Side Ratio R

EXP. (Nakaguchi et al. 1968)

EXP. (Mizota et al. 1988)

EXP. (Sakamoto et al. 1989)

3D LES (Sohankar 2008)

3D RANS (Tamura and Ito 1996)

2D RANS (Shimada and Ishihara 2002)

Current

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

R
M

S
 L

if
t,

 C
L
'

Side Ratio R

EXP. (Sakamoto et al. 1989)

3D LES (Sohankar 2008)

3D RANS (Tamura and Ito 1996)

2D RANS (Shimada and Ishihara 2002)

Current

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5 6 7 8

S
tr

o
u

h
a

l 
N

u
m

b
er

, 
S

td

Side Ratio R

EXP. (Nakaguchi et al. 1968)
EXP. (Okajima 1983)
EXP. (Otsuki et al. 1974)
3D LES (Sohankar 2008)
3D RANS (Tamura and Ito 1996)
2D RANS (Shimada and Ishihara 2002)
Current



 
 
Governing Equation, Numerical Method, Grid and Validation                               Page | 66 

 
 

          Then, the rms value of surface pressure distribution is plotted in Fig.3.16 and compared with 

past experimental work. The rms value has also good agreement with past work like mean value, 

even though the fluctuating component in unsteady RANS was modeled completely by SST k-ω 

model. The present model and setup worked well in case of short bluff body like square cylinder (R 

of 1) where the complete separation of flow occurs at the side surface. A validation metric (VM) 

value of 0.782 was obtained as indicated in Fig.3.16.   

 

          The longitudinal velocity distribution is shown in Fig.3.17. Results are compared with past 

experimental and numerical works. Good accordance with past work can be noticed in the velocity 

distribution too. However, at the wake of body the current simulation recovers the velocity a bit 

faster than the experimental work. 

 

 

 
 

Figure 3.16: rms value of surface pressure distribution at ReB of 1.22x104. Experimental results are: 

Bearman & Obasaju (1982) at ReB= 2x104; Lee (1975) at ReB= 1.76x104 and Pocha (1971) at ReB= 

9.2x104 

 

 

 
 

Figure 3.17: Normalized longitudinal velocity distribution along the flow domain at ReB of 1.22x104. 

Experimental and numerical result: Lyn et al. 1988 at Re=2.14x104, Izuka et al. (1999) at Re=2.2x104 

and Haque et al. (2014) at Re=2.2x104 
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3.10.1.3    Elongated Rectangular Cylinder (R of 5) 
 

After checking the performance of the adopted numerical model and setup for the square cylinder, 

simulation was conducted for an elongated rectangular cylinder where flow reattachment occurs 

after separation at the leading edge. Analysis was conducted at a Reynolds number (ReB) of 6.1x104. 

The steady state force coefficients and mean surface pressure have already been compared with past 

experimental and numerical results in Section 3.9.2 in Table 3.4 and Fig.3.13. Like square cylinder, 

here also good coherence could be observed. Both at the flow separation and reattachment zone it 

has also grasped the mean flow field within desired level. A validation metric (VM) value of 0.90 

was obtained.  

 

          The rms of surface pressure distribution is plotted in Fig.3.18 along with past experimental 

work. Unlike mean surface pressure, discrepancy at the trailing edge between the present and past 

experimental result can be noticed. The present simulation overestimates the magnitude of rms value 

of surface pressure. This also reflects in the validation metric (VM of 0.68) as it yields lower value 

than the mean surface pressure. Nevertheless, the trend of the result is grasped efficiently that the 

location of peak rms value coincides well with the experimental one (Matsumoto et al. 2005 and 

Galli 2005). 

 

          No experimental data of velocity distribution was found in the literature for rectangular 

cylinder having a side ratio (R) of 5 to compare and judge the accuracy of velocity. Therefore, 

present velocity field was compared with flow field obtained from three-dimensional Large Eddy 

Simulation (LES) by Bruno et al. (2012). Fig.3.19 quantitatively compares various flow features 

such as, separation thickness, reattachment length and the location of the vortex core at the side 

surface and after the body. Satisfactory agreement can be noticed between past and present 

simulation result.  

 

 

3.10.1.4    Streamlined Bridge Deck 
 

The aim of the present study was to investigate the bridge deck shaping effects on aerodynamic 

response. Until now we have validated for bluff sections and found good compatibility with past 

work. As the current numerical setup works well for bluff section where large flow separation 

occurs, from theoretical point of view the setup should also work well for streamlined section with 

less flow separation.  

 

          There are no so many data available for streamlined bridge deck in the literature. Šarkić et al. 

(2012) measured the mean value of surface pressure distribution for a streamlined bridge deck. We 

took the opportunity to validate the numerical setup and code again for the streamlined deck by 

comparing with experimental work of Šarkić et al. (2012). The detailed dimension of the deck is 

shown in Fig.3.20 (a). Simulation was conducted at a Reynolds number (ReB) of 5.2x104. Fig.3.20 (b) 

and (c) shows the grid system generated by following the strategy given in Section 3.9.  

 

          Fig.3.21 shows the mean surface pressure along with the validation metric (VM). Very good 

agreement can be observed between experimental and numerical work as predicted earlier. The 

present simulation slightly overestimated the pressure both at the top and the bottom deck surfaces 

due to two-dimensional nature of the simulation. Nevertheless, the overall pressure distribution was 

reproduced quite well and it was also reflected by the validation metric (VM). 
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Figure 3.18: rms value of surface pressure distribution around rectangular cylinder of side ratio (R) 

of 5 at ReB= 6.0x104. Experimental results are: Matsumoto (2005) at Re=1x105 (as cited in Mannini 

et al. 2010b); Galli (2005) at Re=2.1x105 ; Ricciardelli & Marra (2008) at Re=2.7x105 for  R of 5 

 

 

  

(a) LES by Bruno et al. 2012 (b) Current Simulation 

Figure 3.19: Time-averaged flow pattern around rectangular cylinder having side ratio (R) of 5 

 

 

3.10.1.5    Pentagonal Bridge Deck 
 

In the present study along with the streamlined bridge, shaping effects of pentagonal shaped bridge 

deck was also carried. Hence, it was important to examine and validate the numerical setup for 

pentagonal shaped bridge as the section was bluffer than streamlined bridge deck. Mean and rms 

value of surface pressure and velocity distribution for a pentagonal shaped bridge deck were 

measured by Noda (2010) through wind tunnel investigation. Simulation was run at a Reynolds 

number of 6.0x104 and 20x104 to validate the present result by comparing with past work of Noda 

(2010). The deck had a side ratio (R) of 5 and the bottom plate slope (ζB) was adjusted to 14°. 

Fig.3.22 illustrates the grid system adopted for the computation.  

 

          Fig.3.23(a) presents the mean surface pressure around the pentagonal shaped bridge deck. The 

present simulation reproduced the trend of the surface pressure accurately. Specially, at the bottom 

surface leading edge and top surface trailing edge side it has very good compatibility with the 

experimental work. Large discrepancy can be observed around the curb on the top deck and at the 

bottom deck trailing edge side. In fact, large flow separation occurs in those locations as can be seen 

in Fig.3.24. As a consequence the present simulation failed to grasp the exact value of pressure 

coefficients on those locations. However, both at the top and bottom deck trailing edge it could 

reproduce the pressure recovery efficiently.  
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(a) Normalized dimension of the deck (Sarkic et al. 2012) 

 

 
(b) Complete domain grid 

 
(c) Grid near the body 

 

Figure 3.20: Cross-sectional details and the computational grid system adopted for the streamlined 

bridge deck 

 

 

 
(a) Top deck surface 

 
(b) Bottom deck surface 

 

Figure 3.21: Mean surface pressure distribution around the streamlined bridge deck compared with 

past experimental work of Šarkić et al. (2012)  

 

 

          Then the rms of surface pressure is plotted in Fig.3.23(b). In contrast to mean surface pressure, 

the discrepancy between the numerical and experimental work is higher in case of rms pressure. The 

present simulation failed to reproduce the trend in rms pressure at the leading edge side and 

underestimated the magnitude. Basically, in unsteady RANS the fluctuating component is modeled 

based on two transport equation as discussed before and the accuracy deteriorates for complicated 

geometry where massive flow separation occurs. This was also confirmed in past works (Mannini et 

al. 2010b) where unsteady RANS underestimated the response. 

 

          Fig.3.23(a) and (b) also displays the calculated validation metric (VM) based on Eq.3.75. The 

validation metric also reflects the general observation as we discussed in the previous paragraph.  
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(a) Complete domain grid 

 
(b) Grid near the curb 

 

Figure 3.22: Computational grid system adopted for the pentagonal shaped bridge deck 

 

 

 
(a) Mean surface pressure 

 

 
(b) rms surface pressure 

 

Figure 3.23: Surface pressure distribution around pentagonal shaped bridge deck at a Reynold 

number (ReB) of 6.0x104 

 

The mean surface pressure has higher metric value over rms surface pressure and mean bottom 

surface pressure over top surface. The bottom surface mean pressure has the highest metric value of 

0.821 and the other metric values are also well above 0.5. Hence we thought by utilizing this level 

accuracy, one can investigate the trend in result when one specific parameter of interest is changed. 
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          The velocity distribution is compared in Fig.3.24. It is easily apprehensible that the present 

simulation could reproduce the overall and general tendency of velocity distribution very close to the 

experimental one. Even the velocity acceleration on the top of the curb and at the bottom surface  

mid-deck was also grasped very well. However, the numerical wake size is bit larger than the 

experimental one. This level of discrepancy was accepted as in the presented study basically relative 

comparison of flow field of different bridge decks was made.  

 

 

 

3.10.2    Dynamic Responses  
 

 

Availability of data for dynamic responses such as flutter derivatives and unsteady pressure are even 

scarcer than the static aerodynamic response as it requires complicated instrumentation, hard labor 

and quite expensive. In the current study we mainly focused on flutter derivatives and aerodynamic 

damping of the bridge decks with and without fairing. The flutter derivatives of the streamlined 

bridge deck i.e., the deck with fairing were validated by comparing with the flutter derivatives of the 

Great Belt Bridge deck obtained experimentally by Reinhold et al. 1992. In the case of deck without 

fairing, the flutter derivative results of the sharped edged rectangular cylinder having a side ratio (R) 

of 5 and a pentagonal shaped bridge deck without fairing based on the wind tunnel experiment by 

Matsumoto (1996) and Matsumoto et al. (1999), respectively were utilized.   

 

          Along with the flutter derivate, we also calculated aerodynamic damping based on the 

magnitude of unsteady pressure (|CP|) and the phase lag (υ).  These two properties were validated by 

 

 

 
(a) Current simulation at ReB=20x104 

 

  
(b) PIV experiemnt (Noda 2010) at ReB=21x10

4
 

 

Figure 3.24: Comparision of the wind speed ratio around the pentagonal shaped bridge deck. In 

experimental work same colour bar level was used like the numerical work (0-1.6) 
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comparing with past work of Matsumoto (1996) for the elongated rectangular cylinder (R of 5). For 

all the cases the grid system was generated by following the strategy discussed in Section 3.9. The 

reduced velocity (U/fB1) was altered by changing the oscillation frequency (fε and fα) rather than 

changing the inlet velocity (U). We experienced that the dynamic responses demand higher efforts to 

validate as compared to the static responses as those responses are quite sensitive (Sarker et al. 2009 

and Caracogila et al. 2009).  

 

 

3.10.2.1    Great Belt Bridge Deck  
 

In the present study one of our target bridge deck was the deck with fairing, hence it was important 

to validate the numerical setup for a similar bridge deck such as the Great Belt Bridge deck. Hence, 

we conducted simulation for the Great Belt Bridge deck to validate the flutter derivative results. 

Current results were compared with the experimental results evaluated by Reinhold et al. (1992) as 

cited in Stӕrdahl et al. (2007). Simulation was conducted at a Reynolds number (ReB) of 6.2x104. 

Flutter derivatives were extracted based on the methodology and formula presented in Chapter 2 

(Section 2.3.2.2). The forced vibration simulation was carried out with a heaving (εₒ) and torsion (αₒ) 

amplitude of 0.006B and 1°, respectively. Only six flutter derivatives were calculated as cited in 

Stӕrdahl et al. (2007).  

 

          Fig.3.25 displays the calculated flutter derivatives. At the first look very good agreement can 

be noticed between the present computation and past experimental work. However, at higher 

reduced velocity (U/fB1) the present numerical result deviates from the experimental works and 

overestimates the responses. Similar trend was also reported for this kind of streamlined deck in past 

works (Stӕrdahl et al. 2007, Bai et al. 2010, Sarkic et al. 2010, Nieto et al. 2015 and Patruno 2015).  

 

          Noticeable discrepancies can be noted for H2
* and H1

*. As reduced velocity (U/fB1) increases 

the frequency (f) of the vibration decreases and separation length of the flow increases. As a result 

the complexity in describing shear layer instabilities increases and the unsteady RANS simulation 

fails to predict accurately the responses at the flow separation region and the point of flow 

reattachment (Patruno 2015). That directly affects the flutter derivatives values. However, present 

simulation had similar level of accuracy to predict H2
* and H1

* as like past works (Stӕrdahl et al. 

2007, Bai et al. 2010, Sarkic et al. 2010, and Patruno 2015). 

 

          The A1
* and H1

* computed directly by exciting the model in heaving mode and from the 

interdependency relationship among the flutter derivatives as discussed in chapter 2 are compared in 

Fig.3.25(c) and Fig.3.25(d), respectively. The interdependency relationships predict the flutter 

derivatives quite accurately and better than the direct computation. Basically, when the model is 

excited in heaving mode the shear layer separation becomes even more pronounce and accuracy 

decreases. However, the overall trend in flutter derivate was predicted quite accurately by the current 

numerical setup. Further, in case of comparative analysis among various shapes of the bridge decks, 

the remaining amount of the discrepancy can be accepted. 

 

 

3.10.2.2    Elongated Rectangular Cylinder (R of 5) 
 

Along with the streamlined deck, another interest was the deck without fairing. The deck without 

fairing usually experiences larger flow separation; therefore it is necessary to check the performance 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 3.25: Comparison among flutter derivatives of Great Belt bridge deck evaluated numerically 

(current study) and experimentally (by Reinhold et al. (1992) as cited in Stӕrdahl et al. (2007)): (a), 

(b) and (c) Evaluated directly by torsional and heaving mode vibration and (d) Calculated from the 

interdependency relationship among the flutter derivatives 

 

 

of the current simulation for this type of deck having sharp edge. In this section we present the 

results for the rectangular cylinder with a side ratio (R) of 5. Even though, the rectangular cylinder 

possesses quite large separation as compared to pentagonal shape bridge deck, we carried out this 

validation to judge the performance of the present numerical setup in extreme case. Only torsional 

mode flutter derivatives were considered as for this type of bridge deck only the torsional mode 

vibration is critical (Kubo et al. 2007 and Noda 2010). Simulations were carried out at a Reynolds 

number (ReB) of 5.0x104 with a torsional amplitude (αₒ) of 1°.  

 

          The extracted flutter derivatives are reported in Fig.3.26 and compared with past experimental 

work of Matsumoto (1996). A reasonable accordance can be noticed between past and present 

numerical result, yet the accuracy deteriorates for the present shape. Discrepancy can be noticed for 

H2
* and A2

* for these two derivatives as compared to other flutter derivatives and similar higher 

discrepancy was also reported in previous researches (Sarwar et al. 2008, Huang et al. 2009, 

Miranda et al. 2014, and Nieto et al. 2015).  .  
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          In particular, referring to Fig.3.26, the flutter derivatives of the present work match better to 

those were extracted by Sarker et al. (2009) and some differences can be noticed between the flutter 

derivatives were extracted by Matsumoto (1996) and Sarker et al. (2009). It is really challenging to 

validate for this type of bluff section, it would be more practical if we can validate our model for 

more similar section like pentagonal shape deck having less separation. In the next section validation 

for a pentagonal shaped bridge deck is presented.     

 

          Along with the flutter derivatives we also calculated aerodynamic damping of the bridge decks 

and it is also essential to validate this kind of responses. However, we already have checked the 

performance of flutter derivatives and that is also a kind of validation for aerodynamic damping as 

they are also function of the amplitude of unsteady pressure (|CP|) and phase lag (υ). However, in the 

literature there are not much data available regarding the unsteady pressure ((|CP|) and the phase lag 

(υ) of the bridge deck or bluff body. Matsumoto (1996) reported the amplitude of unsteady surface 

pressure ((|CP|) and the phase lag (υ) distribution for the elongated cylinder (R of 5) in torsional 

mode of vibration, we took this chance to compare our computed unsteady pressure amplitude ((|CP|) 

and phase lag (υ) with past experimental output.  

 

          Fig.3.27 reports the amplitude of unsteady pressure ((|CP|) and the phase lag (υ) distribution 

for the rectangular cylinder (R of 5). As can be seen simulation with torsional amplitude (αₒ) of 1° 

underestimates the magnitude of unsteady pressure ((|CP|) noticeably, yet the phase lag (υ) agrees 

well with the experimental computation. As the unsteady pressure is an amplitude dependent 

property, thus one more simulation was conducted with a torsional amplitude (αₒ) of 2° to maintain 

similarity with the experimental work believing that will lessen the discrepancy observed in 

Fig.2.27(a). Fig.3.27 (a) depicts that the compatibility of the unsteady pressure (|CP|) with past 

experimental work improves dramatically after the increase in the amplitude (αₒ) of the torsional 

vibration, while the magnitude of the phase lag (υ) remains unaltered.   

 

 

 
(a) Coupled derivatives 

 
(b) Non-coupled derivatives 

 

Figure 3.26 : Flutter derivatives of the rectangular cylinder having side ratio (R) of 5 extracted from 

forced torsional oscillation 

 

 

 

-5

0

5

10

15

20

0 5 10 15 20 25

A
2
*

A
3
*

Uf/B1

A2* Exp. (Matsumoto 1996)

A3* Exp. (Matsumoto 1996)

A2* Exp. (Sarker 2009)

A3* Exp. (Sarker 2009)

A2* Current αₒ=1 

A3* Current αₒ=1 

-150

-100

-50

0

50

100

0 5 10 15 20 25

H
2
*
, 
H

3
*

Uf/B1

H2* Exp. (Matsumoto 1996)
H3* Exp. (Matsumoto 1996

H2* Current αₒ=1 
H3* Current αₒ=1 



 
 
Governing Equation, Numerical Method, Grid and Validation                               Page | 75 

 
 

 
(a) Amplitude of unsteady pressure (|CP|) 

 
(b) Phase lag (υ) 

 

Figure 3.27: Unsteady pressure characteristics of the rectangular cylinder having side ratio (R) 5 

 

 

3.10.2.3    Pentagonal Bridge Deck without Curb 
 

In previous section the validation for the rectangular cylinder having a side ratio (R) of 5 was 

discussed. However, our considered bridge deck without fairing was pentagonal in shape and this 

sort of bridge deck experiences less flow separation than the sharp edged rectangular cylinder (R of 

5). The present model should perform better for the pentagonal shaped bridge deck. Fortunately, in 

the literature we found experimental data of two torsional flutter derivatives (A2
* and H3

*) for the 

pentagonal shaped bridge deck without curb conducted by Matsumoto et al. (1999) and tried to 

validate those two torsional flutter derivatives.  

 

          The deck had a side ratio (R) of 6 and a bottom plate slope (ζB) of 13.13°. Fig.3.28 shows the 

computational grid system for the pentagonal bridge deck. The Reynolds number (ReB) was set to 

6.0x104 and forced torsional vibration simulation was carried out with a torsional amplitude (αₒ) of 

2°. Fig.3.29 illustrates the computed flutter derivatives along with the experimental results 

(Matsumoto et al. 1999). The present model and numerical setup performs much better for the 

pentagonal bridge deck and predicted the trend of the flutter derivatives for increasing reduced 

velocity (U/fB1) quite well as expected earlier. Specially, the H3
* matches both qualitative and 

quantitatively. For A3
* certain amount of discrepancy can be noticed, yet the decreasing tendency of  

 

 

 
(a) The whole domain grid 

 
(b) Grid near the body 

 

Figure 3.28: Computational grid system for the pentagonal shaped bridge deck without curb 
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(a) 

 
(b) 

 

Figure 3.29: Torsional (A2
* and H3

*) flutter derivatives of the pentagonal bridge deck at ReB of 

6.0x104 

 

 

A3
* with the increase in reduced velocity was grasped well. We accepted this level of accuracy as 

relative comparison of flutter derivatives among similar bridge decks was made lessening the 

demand of quantitative accuracy. 

 

 

 

3.11    Concluding Remarks 
 

 

This chapter dealt with the description of the computational method adopted in the current study and 

detailed validations. The governing equations of fluid flow were derived and presented briefly. The 

turbulence modeling was demonstrated and equations were discretized. A strategy was proposed to 

generate grid system to obtain converged solution promptly to facilitate the grid generation 

technique. Both the static and dynamic responses were validated for various bluff bodies and bridge 

decks with proper validation metric by comparing with past experimental works.  

 

          The proposed strategy for generating grid system was found to be very efficient and produces 

converged solution with less effort. By exploiting the proposed strategy grids for various bridge 

decks were produced and provided accurate results at the very first trial. The present numerical 

method and setup could reproduce both the static and the dynamic responses with fairish accuracy. 

The performance of the utilized methodology devolved for the bluff sections having large flow 

separation both for the static and the dynamic simulation results. Exclusively for dynamic simulation 

the accuracy degrades at high reduced velocity.  

 

          Nevertheless, the trends of the results were captured quite accurately in almost all the cases 

both for the static and dynamic responses. Especially for the case of bridge decks with or without 

fairing the present numerical method and setup worked noticeably better than the sharped edged 

bluff sections. We accepted this level of accuracy thinking this would be sufficient to investigate the 

influence of various shaping parameters on aerodynamic responses as primarily relative comparisons 

was made among the responses of various shapes.  
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Chapter 4 

 

Bridge Deck Shaping Effects on 

Aerodynamics: With Fairing 

 

 
 

Long span bridge decks are frequently shaped as a streamlined to improve the aerodynamic response 

by reducing the along wind loading and suppressing the after-body vortices. Normally, triangular 

fairings are attached at the leading and trailing edge or decks are shaped hexagonally (by adjusting 

the bottom plate slope of the deck along with the fairing) to achieve the streamlined shape. There are 

a number of shaping parameters for this kind of deck: i) Top plate slope (θT), ii) Bottom plate slope 

(ζB) iii) Width ratio (W= b/B) and iv) Side ratio (R=B/D).  

 

         The aim of the present chapter is to investigate the influence of these shaping parameters on 

steady state response and the flow field of the bridge decks. The chapter is broadly divided in to two 

parts. The first part deals with the influence of top (ζT) and bottom (ζB) plate slope on aerodynamic 

response and flow field of the bridge deck with a fixed side (R) and width (W) ratios. The second 

part deals with the effects of width ratio (W) on steady state responses for a fixed set of top (ζT) and 

bottom (ζB) plate slopes. Along with these, we also discuss the influence of various other shaping 

and aerodynamic aspects such as, the types of the handrail, the nose location of the edge fairing (y), 

the side ratio (R) and the Reynolds number effects (ReB). For all the simulation, the grids were 

generated by following the strategy presented in Chapter 3 and had an average y+ value near about 

2.8 with a maximum value of about 7.5 at the bridge deck periphery. For setting the analysis case, 

similar numerical setup was adopted as discussed in Chapter 3.  
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4.1    Behavior of Deck with Edge Fairing 
 

 

Edge fairings are often attached at the side of the deck to obtained improved aerodynamic responses. 

Normally, they are applied to the shallow depth bridge deck for medium to long span bridges, such 

as Deer Isle (USA), Bronx-whitestone (USA), Hakucho (Japan) and Tempozan (Japan) bridges. 

Edge fairings are also used for pedestrian bridges. Fig. 1 shows edge fairing applied to the Bronx-

Whitestone Bridge in USA.  

 

          In previous works, mainly wind tunnel investigations were conducted on some specific shapes 

of the triangular edge fairings to show its effectiveness (Yamaguchi et al., 1986; Nagao et al. 1993; 

De Miranda and Bartoli 2001). Miranda and Bartoli (2001) considered four sections of fairing and 

conducted wind tunnel experiment. They mentioned that the fairing improves the aerodynamic 

stability as compared to the basic section. Effects of edge fairing on flutter stability of a two edge 

box girder bridge were investigated by Sukamta et al. (2008). From their wind tunnel experiment it 

was demonstrated that some suitable fairing shapes can improve the flutter stability.  

 

          However, in those works only dynamic response were focused, yet the static responses is also 

important to reduce the wind load at high wind speed. Moreover, no detailed flow field analysis was 

conducted to understand the aerodynamic response. Therefore, detailed and systematic investigation 

are required on edge fairing to know how the variation of fairing shape influences the flow field 

around the bridge deck and thereafter affects the aerodynamic responses. Therefore, we devoted 

detailed numerical investigation on triangular edge fairing of different shapes. First the influence of 

edge fairing on aerodynamic response is tried to clarify for a bridge deck with a side ratio (R) of 5. 

Then, the practical issues such as the influence of handrail type and the nose location of the fairing 

are also investigated. All the simulations were conducted at a Reynolds number (ReB) of 6.0x104. 

 

 

 

4.1.1    Influence of Top (θT) and Bottom (θB) Plate Slopes 
 

 

Fairing shapes were altered sequentially by changing the top (ζT) and the bottom plate slope (ζB) 

without shifting the leading edge bottom toe point, i.e., the width (W=b/B) ratio is 1. Fig.4.2 shows 

the schematic view of the considered deck section. Based on the survey results as discussed in 

Chapter 2, the top plate slope (ζT) of the fairing was varied from 30º to50º, while the bottom plate 

slope (ζB) was varied from 10º to 40º. Simulations were conducted by attaching perforated handrail 

with curb to the deck. The handrail had a solidity ratio near about 40%. The fairing shape effect was 

observed on the steady state force coefficients and the Strouhal number (St). Surface pressure and 

flow pattern were visualized elaborately to explain the behavior of global parameters and to 

comprehend the flow field. 

 

 

4.1.1.1    Steady State Force Coefficients 
 

Fig.4.3 shows the mean value of global parameters. As can be seen the top (ζT) and bottom (ζB) 

slopes affect the steady state force coefficients significantly. In Figs. 4.3(a) and (b), as the top plate  
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                                                                                                           http://www.citiesgallery.com/  

 

Figure 4.1: Edge fairing applied to the Bronx-Whitestone Bridge deck   

 

 

 
 

Figure 4.2: Schematic view of the considered bridge deck and various important notations 

 

 

slope (ζT) decreases the drag and lift value decreases, yet it doesn‟t affect the moment value 

significantly. On the other hand, as the bottom plate slope (ζB) decreases the drag and lift value 

decreases too, still the moment increases.  

 

          For a range of bottom plate slope (ζB) from 25° to 15° the deck experiences the lowest drag 

and experiences negative lift value for any value of the top plate slope (ζT). From aerodynamic point 

of view it is always desirable to have negative lift, as it increases the tension in the cable and 

thereafter improves the stiffness of the bridge system. Therefore, smaller top and bottom plate slope 

would be a better choice to have less static aerodynamic loading. However, too much small bottom 

plate slope would increase the drag and moment value significantly.  

 

          The rms value of global parameters is another important parameter that provides information 

about the dynamic or vortex shedding behavior about the deck section. The rms value of steady state 

force coefficients are plotted in Figs.4.4(a), (b) and (c). The rms value of steady state force 

coefficients decrease as the top plate slope of the fairing (ζT) decreases. Similarly behavior also can 

be found for bottom plate slope (ζB) for a certain range of slope (ζB). The rms value decreases up to a 

bottom plate slope (ζB) of 15° and then increases again beyond that value.  

 

          In Fig.4.4(c), the shedding frequency (f) is expressed in the normalized form of the strouhal 

number, St=fD/U. Where the shedding frequency, f, was computed from the peaks in the power 

spectra of the lift fluctuations. No clear shedding frequencies were found for a range of bottom plate 

slope (ζB) from 25° to 15°, when the top plate slope (ζT) was placed at 40° and 30°. For the same  
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(a) Drag force coefficients (b) Lift force coefficients 

 
(c) Moment coefficients 

 

Figure 4.3: Mean value of steady state force coefficients 

 

  
(a) Lift force coefficients (b) Moment coefficients 

 
(c) Strouhal number 

 

Figure 4.4: rms value of steady state force coefficients and Strouhal number 
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range of slopes, the drag is less and rms values of steady state force coefficients are the least. In this 

section we found some trends in results and it is important to explore more in details to understand 

the responses. 

 

          We selected four shapes of fairing for elaborate analysis: i) ζT40-ζB40 ii) ζT40-ζB20 iii) 

ζT40ζB10 and iv) ζT30-ζB10. For the first three shapes, the top plate slope is same, yet the bottom 

plate slope decreases gradually. These three sections would explain why the aerodynamic response 

in Figs.4.3 and 4.4 decrease first then increase again for decreasing bottom plate slope (ζB). In last 

two sections, the bottom plate slope (ζB) is same, yet the top plate slope (ζT) decreases. By 

comparing among them it would be clear that why smaller top plate slope has lesser aerodynamic 

response.  

 

          The after-body velocity fluctuations are plotted to in Fig.4.5. The after-body velocity 

fluctuation provides information regarding the strength of the after-body vortex shedding (Nakamura 

and Ohya 1984). As can be seen that the velocity fluctuations also shows the similar trend we found 

in rms value (Fig.4.4). Large fluctuation can be found for ζT40-ζB40, then the fluctuation decreases 

for ζT40-ζB20 and the fluctuation increases again for ζT40-ζB10. For ζT 40-ζB20 the fluctuations is 

significantly lesser than the other cases and no clear shedding frequency was found for this section.  

 

 

4.1.1.2    Pressure Distribution 
 

The mean and rms value of surface pressure coefficients for the bridge deck are plotted in Fig.4.6. 

The pressure variations are plotted only for the selected shapes considered in previous section. As 

can be seen the top surface pressures are lesser affected as compared to the bottom surface pressure. 

If we observe the Fig.4.6(a) carefully, it provides us meaningful information. As the top and bottom 

plate slope (ζB) decreases the top deck suction also decreases and take part in increasing the negative 

lift value (Fig.4.3(b)).  

 

          On the other hand, the variation of fairing shape affects the bottom surface pressure 

(Fig.4.6(b)) both at the leading and trailing edge side. At the bottom surface, the leading edge toe is 

mainly affected by the variation of fairing shape. Large cavity zone appears for ζT40-ζB40 and the 

location of maximum suction shifts gradually towards the leading edge nose as the bottom plate 

slope (ζB) decreases. This kind of leading edge cavity zone is responsible for generating small 

bubbles, after generation, this bubbles are advected to the downstream and coalescences with the 

downstream vortexes (Pullin and Perry 1980; Bruno and Mancini 2010; Bruno et al. 2010). From  

 

 

 
 

Figure 4.5: After-body velocity fluctuations for selected shapes of fairing. Velocity fluctuations were 

measured at the point, 1D downstream and 1D down from the trailing edge bottom corner of the 

bridge deck 
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(a) Top surface of the deck (b) Bottom surface of the deck 

 

Figure 4.6: Mean surface pressure distribution around the bridge deck 

 

 

aerodynamic stability point of view, this cavity zone should be as small as possible. However, the 

another reason behind the negative lift value in Fig.4.6(b) is mainly due to this type of leading and 

trailing edge suction. For example, for ζT40-ζB40 has the lowest suction and therefore experiences 

the lowest negative lift value. 

 

          The boundary layer velocity profile at the trailing edge for ζT40-ζB10 and ζT30-ζB10 in the 

vertical plane is plotted in Fig.4.7 for further understanding the trend in results we found in Fig.4.3. 

Fig.4.7 clearly shows the formation of boundary layer. If we compare Fig.4.6(b) and Fig4.7, we can 

easily realize that higher suction has higher velocity. This kind of physics of the flow is not 

surprising if we see the Bernoulli equation. Due to the variation of velocity, the advection of flow is 

also affected and thereafter affects the Strouhal number (St). If we see in Fig.4.7, ζT30-ζB10 has 

higher shear layer velocity than ζT40-ζB10, therefore the flow moves faster and Strouhal number (St) 

for ζT30-ζB10 becomes higher than ζT40-ζB10.  

 

          Similarly, the drag behavior can also be explained partially based on this kind of physics. If 

we consider the boundary layer height in Fig.4.7 and compare with the corresponding drag value in 

Fig.4.3(a), we can easily find a trend that drag increases as the boundary layer become thicker. For 

example, ζT 40-ζB10 has the thicker boundary layer; therefore it experiences the higher drag. While 

for ζT 30-ζB10 has the lower drag as its boundary layer is thinner. The moment value in Fig.4.3(c) is 

primarily controlled by the pressure distribution on the bottom surface. When the bottom plate slope  

 

 

 
 

Figure 4.7: Boundary layer velocity profile at the trailing edge 
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(ζB) decreases, the nose of the fairing goes down and the bottom surface leading edge suction 

increases (Fig.4.6(b)). As a result, the positive moment (anti-clockwise) tendency of the bridge deck 

increases gradually as the bottom plate slope (ζB) decreases. 

 

          The rms value of surface pressure is an important parameter and provides information 

regarding the general dynamic behavior of the bridge deck. The rms value of the surface pressure is 

plotted in Fig.4.8. Both the top and the bottom surface rms value of pressures are highly influenced 

by the change in fairing angles. For mean pressure distribution the bottom surface leading edge was 

important while for rms pressure both the top and the bottom surface trailing edge are important. 

This implies that the rms value is mainly affected by the after-body vortex shedding behavior. In the 

next section, the velocity distributions are plotted and tried to understand the mechanism of 

aerodynamic response in a better way. 

 

 

4.1.1.3    Velocity Distribution 
 

From the previous section, we comprehended that the rms value is mainly affected by the after body 

vortex activity. Here, we plot the instantaneous flow field for the selected fairing sections. Fig.4.9 

shows the instantaneous flow fields for ζT40-ζB40 section along one lift cycle. For this type of 

section there are a number of important flow features. The leading edge top and bottom surface 

separation and the trailing edge bottom deck surface separation. When large bottom plate slope 

(ζB=40°) is utilized then large leading edge top surface cavity zone appears and vortices shed at the 

trailing edge due to trailing edge flow separation. 

 

          In Fig.4.9(a), the V1 vortex is forming and the V2 vortex is moving away from the deck at the 

mid-deck height location. Therefore, the deck experiences mean lift force. Then, the V2 vortex 

disappears completely and V1 becomes larger; as a result the deck experiences the maximum lift 

force. After that, the upper V1 vortex disappears, yet the V2 becomes mature by this time. 

Therefore, the deck experiences the minimum lift force, then the cycle moves to Fig.4.9(a) again and 

goes on. For this section, V1 vortex creates an alternating vortex shedding cycle with V2 vortex. 

Due to this trailing edge after-body vortex shedding, the rms pressure was affected and shows higher 

value at the trailing edge. 

 

          For ζT40-ζB20 the lift fluctuations was completely random and the amplitude of fluctuation 

was almost zero as we showed earlier, hence we plot the velocity distribution for two extreme  

 

 

 
(a) Top surface pressure 

 
(b) Bottom surface pressure 

 

Figure 4.8: rms value of surface pressure around the bridge deck 
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instances of lift value in Fig.4.10. As can be seen from the figure both the leading edge cavity size 

and trailing edge separation decrease and the V2 vortex forms far away from the body. However, the 

V2 vortex can‟t create vortex cycle with the V1 vortex as the size of the V2 vortex is quite small as 

compared to the V1 vortex. As a result the there is almost no fluctuation of surface of pressure at the 

trailing edge of the bridge deck. On the other hand, for ζT 40-ζB10 (Fig.4.11) as the bottom plate 

slope decreases the nose of the fairing goes further down and the top plate length increases. As a 

result the V2 vortex forms on the top fairing plate and creates vortex cycle with the V1 vortex. These 

closely formed vortices increases the rms value of the pressure and velocity again. 

 

          Now, finally if we compare between ζT40-ζB10 (Fig.4.11) and ζT30-ζB10 (Fig.4.12), in case of 

ζT30-ζB10 as the top plate slope decreases the nose goes up. Therefore, the V2 vortex doesn‟t have 

enough room to form on the top plate and the interaction of V2 vortex decreases with the deck. 

Moreover, the size of the V2 vortex also decreases. As a result ζT30-ζB10 experiences smaller rms 

value of pressure and global parameter as compared to the ζT40-ζB10. Further, As the top plate slope 

(ζT) decreases, the leading edge top surface separation also decreases and increases the negative lift 

value (Figs.4.3(b) and 4.6(a)). 

 

          Form the above discussion we understand the mechanism behind the steady state responses we 

obtained earlier. We found some specific fairing shapes (θT40-ζB25, ζT40-ζB20, ζT30-ζB25 and ζT30-

ζB15) have better aerodynamic responses when perforated handrail is attached. However, in practical 

bridges not only perforated but also solid handrails are attached and curbs are not placed at the side 

 

 

  
(a) (b) 

 
(c) 

 

Figure 4.9: Instantaneous velocity field for ζT40-ζB40 along one lift cycle at 0°(a), 90°(b) and 

270°(c) 

 

 

 

  
(a) (b) 

Figure 4.10: Instantaneous velocity field for ζT40-ζB20 for maximum (a) and minimum (b) value of 

lift  
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(a) (b) 

 
(c) 

 

Figure 4.11: Instantaneous velocity field for ζT40-ζB10 along one lift cycle at 0°(a), 90°(b) and 

270°(c) 

 

 

  
(a) (b) 

 
(c) 

 

Figure 4.12: Instantaneous velocity field for ζT30-ζB10 along one lift cycle at 0°(a), 90°(b) and 

270°(c) 

 

 

of the bridge deck. We found some trends in results for various top (ζT) and bottom (ζB) plate slopes. 

Therefore, it is important to know how the variation of solidity ratio of handrails influences the trend 

in the results. In the following section, a comparison is made between the aerodynamic response of 

solid, perforated handrail with and without curb cases. 

 

 

 

4.1.2    Influence of Handrail Types 
 

 

In practical bridges along with the perforated handrails, solid handrails are also attached and often 

perforated handrails are used with the curb at the side of the deck. We already have demonstrated the 

responses under perforated handrail in the previous section. In this section, we show how the 

response of bridge deck is influenced when various types of handrail are utilized. Fig.4.13 illustrates 

various handrails adopted for investigation. The handrails had a solidity ratio of 100% (Fig.4.13(a)), 

40% (Fig.4.13(b)) and 30% (Fig.4.13(c)). The Simulations were carried out only for top plate slope 
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(ζT) of 40º and bottom plate slope (ζB) was varied from 10º to 40º. Fig.4.14 shows the mean value of 

steady state force coefficients and rms value of lift force coefficients as the drag and the moment 

have almost similar trend in results.  

 

          Fig.4.14 depicts that the solid handrail has significantly higher response than the others. As the 

solidity ratio of the handrail decreases the aerodynamic behavior improves and the perforated 

handrails without curb shows the lowest aerodynamic responses. However, the most important 

information is, the trend in the result we found in the last section due to variation of bottom plate 

slope (ζB) remains almost same for any type of handrail. Fig. 4.15 displays the flow field in terms of  

 

 

 
(a) Solid 

 
(b) Perforated W/Curb 

 
(c) Perforated WO/Curb 

 

Figure 4.13: Various of types handrails utilized for investigation 

 

 

 
(a) Mean value of drag force coefficients 

 
(b) Mean value of moment coefficients 

  

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 4.14: Influence of handrail types on steady state force coefficients 
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streamlines and wind speed ratio around the bridge deck with a bottom plate slope (ζB) of 20° as it 

possess better aerodynamic responses. The solid handrail case possess very large vortex on the top 

deck surface. Both of the perforated cases with and without curb, experience the vortices at the 

trailing edge of the deck only. Therefore, the perforated cases experience lower fluctuation of 

aerodynamic coefficients as compared to the solid one. Further, as the solidity ratio of the handrail 

decreases, the wake size decreases significantly and thereafter decrease the drag. If a relative 

comparison is made among the flow fields in Fig.4.15, it can be deduced that the deck with the 

perforated WO/Curb experiences the least flow separation with the smallest wake. As the trend in 

the results remains almost same for any type of handrails, for the remaining part of the investigation 

we used perforated handrail WO/Curb as modeling is easier and accuracy of the numerical results 

enhances due to less flow separation.   

 

 

 

4.1.3    Influence of Nose Location 
 

 

Exclusively for edge fairing, the same sets of top and bottom plate slope can be set with in nose up 

or nose down situation. Fig4.16 illustrates schematically the variation of nose location. Therefore, 

depending on the nose location, the aerodynamic response may also be affected. To know the 

influence of nose location, we conducted one more set of simulation for a fixed bottom plate slope 

(ζB) of 40° by changing the top plate slope (ζT) from 25° to 11° and compared with the result shown 

in the last section for reverse combination of slopes i.e., the top plate slope (ζT) was 40° and the 

bottom plate slope (ζB) was varied from 25° to 11°.  

 

           

 
(a) Streamline plot (solid ) 

 

 
(b) Velocity contour (Solid)  

 

 
(c) Streamline plot (Perforated W/Curb) 

 

 
(d) Velocity contour (Perforated W/Curb) 

 

 
(e) Streamline plot (perforated WO/Curb) 

 
(f) Velocity contour (Perforated WO/Curb)  

 

Figure 4.15: Comparison of time averaged flow field distribution around the bridge deck (ζT40-ζB20) 

for different handrail type  
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          The mean value of steady state force coefficients and the rms value of lift force coefficients 

are plotted in in Fig.4.17 for the nose down (ζT of 40°) and nose up (ζB  of 40°) shape of fairings. By 

observing Fig.4.17, it can be assured that the responses vary quite noticeably when the nose location 

changes. Both the mean value of drag force (CD) and rms value of lift force (CL') increase as the nose 

goes up. On the other hand, both the lift (CL) and moment (CM) force change the sing. Except 

magnitude, the direction of moment force doesn‟t bear any significance from aerodynamic point of 

view. However, the direction of lift force is important for long-span cable-supported bridges. A 

positive value of lift force is always alarming for the bridge deck as it pushes the deck upward, the 

cable  tension  decreases,  decreasing  the s tiffness  of  the  bridge  system and  makes  the  bridge   

 

 

 

 
(a) Nose down 

 
(b) Nose up 

 

Figure 4.16: The concept of nose location in edge fairing and the range of top and bottom 

plate slope used for investigation 

 

 

 
(a) Mean value of drag force coefficients 

 

 
(b) Mean value of moment coefficients 

 

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 4.17: Influence of nose location on steady state force coefficients  
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vulnerable against wind.  

 

          Based on the observed aerodynamic response it can be said that the nose down position of 

fairing possess better aerodynamic behavior than the nose up position. The most critical response 

would be the mean value of the lift force coefficient (CL). Fig.4.18 compares the wind speed ratio 

between two decks: i) ζT40-ζB20 (Nose down) and ii) ζT20-ζB40 (Nose up). The flow field looks 

almost identical except the leading edge separation alters the location of formation. Interestingly, in 

case of nose up situation the leading separation forms at the bottom deck surface and increases the 

downward force, yet the lift shows positive values. Basically, the reason of positive lift value lies 

behind the velocity of the boundary layer flow. When the nose goes up, the deck top surface 

becomes flatter than the bottom surface and the flow moves much faster. Fig.4.19 shows the mid-

section velocity distribution at the vertical plane. As can be seen when the nose goes up, the top deck 

boundary layer velocity increases than the nose down situation, decreasing the pressure and 

increasing the upward force. In case of nose down situation reverse mechanism happens.  

 

 

 

4.2    Behavior of Streamlined Bridge Deck 
 

 

Streamlined bridge deck is one of the popular deck shapes adopted for long-span cable-supported 

bridges. Fig.4.20 shows two practical applications of streamlined bridge decks in long-span cable-  

 

 

 
(a) ζT40-ζB20 (Nose down) 

 
(b) ζT20-ζB40 (Nose up) 

 

Figure 4.18: Influence of nose location on mean wind speed ratio around the bridge deck 

 

 

 
 

Figure 4.19: Influence of nose location on boundary layer at the mid deck width  
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                                http://www.cpic.de/en/project.php 

(a) Nanjing No.2 Yangtze Bridge 

            
              http://russiaprofile.org/photos/52678_7.html   

(b) Russky Bridge           

 

Figure 4.20: Application of streamlined bridge deck for practically constructed bridges  

 

 

supported bridges. In case of streamlined deck, a portion of the bottom deck plate is inclined and a 

much smaller fairing is attached at the side of the bridge deck that saves substantial amount of 

material cost. An edge fairing can be transformed into a streamlined deck by shifting the lower edge 

corner towards inward as shown in Fig.4.21. Therefore, we can combine edge fairing and 

streamlined deck by a new parameter as introduced earlier in Chapter-2 is the width ratio (W).  

 

          We already have discussed in the introduction chapter about the past investigations regarding 

this kind of deck. Previously only wind tunnel investigation was carried out for investigation the 

bottom plate slope (ζB) effects on aerodynamic responses. Wang et al. (2009) found that the flutter 

wind speed increases significantly for a bottom plate slope (ζB) smaller than 16° and later Larsen and 

Wall (2012) found that vortex induced vibration disappears for a bottom plate slope around 14.8°. 

However, the steady state response and the flow field were not analyzed in detail for better 

understanding the aerodynamic responses for this type of bridge deck. Furthermore, depending on 

the width ratio (W) the aerodynamic response will also vary. Still a lot more to know about the 

aerodynamics of the streamlined deck, the influence of bottom plate slope (ζB),  the influence of 

width ratio (W), the influence of side ratio (R) and the influence of Reynolds number (ReB) etc. These 

aspects are discussed sequentially in the following sections.  

 

 

 

4.2.1    Influence of Width Ratio (W)  
 

 

          In this section, we present detailed investigation results for the streamlined bridge deck with 

different width ratios (W). The simulations were conducted at a Reynolds number of 6.0x104 same as  

 

 

 
 

Figure 4.21: Difference of streamlined deck from edge faring and various important notations 
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the previous analyses to make the comparison rational. Four width ratios (W) 1, 0.7, 0.5 and 0.3 were 

considered for simulations as shown in Fig.4.22. For each of these width ratios (W), the bottom plate 

slope (ζB) was varied from 25° to 11°, and the top late slope (ζT) was kept fixed at 40°. First the 

influence of width ratio (W) and bottom plate slope (ζB) on steady state force coefficients were 

investigated. Then, the flow fields were analyzed for detecting important flow features and 

explaining the aerodynamic responses.  

 

 

4.2.1.1    Steady State Force Coefficients 
 

Fig.4.23 summarizes the mean steady state force coefficients for various width ratios (W). The mean 

value changes a lot both for the bottom plate slope (ζB) and width ratio (W). The trend in the results 

for the lift and moment remain same as like edge fairing (W=1) due to variation of bottom plate 

slope (ζB), yet the drag shows different trend depending on the width ratio (W). For any value of 

width ratios (W), the lift decreases and moment increases as the bottom plate slope (ζB) decreases. 

On the hand, for drag force, the minimum drag value can be obtained at a large bottom plate slope 

(ζB=20°) for large width ratio (W=1), yet for smaller width ratio (W˂1) the minimum drag position 

sifts gradually towards smaller bottom plate slope (ζB). However, one trend is obvious that the 

magnitude of all the force and moment coefficients decreases at small bottom plate slopes (ζB≤15 ) 

for any value of width ratio (W) smaller than 1. 

 

          The sensitivity of the aerodynamic response increases as the width ratio (W) decreases. For 

example, in case of edge fairing (W=1) the response varies nominally as the bottom plate slope (ζB) 

changes, yet for small width ratio (W=0.5 or 0.3) the response alters quite well. Basically, as the 

width ratio (W) decreases the length of the bottom plate slope increases and their influence on 

aerodynamic response increases too.  

 

 

 
(a) Edge Fairing (W=1) 

 
(b) Streamlined Deck (W=0.7) 

  

 
(c) Streamlined Deck (W=0.5) 

 
(d) Streamlined Deck (W=0.3) 

 

Figure 4.22: Cross-sectional details of the streamlined decks employed for investigation 
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(a) Drag force coefficients 

 
(b) Lift force coefficients 

  

 
(c) Moment coefficients 

 

Figure 4.23: Influence of bottom plate slope (ζB) and width ratio (W) on mean value of steady state 

force coeffieients  

 

 

          A careful observation in Fig. 4.23 explains that there are two distinct zones of bottom plate 

slope (ζB) and exhibits similar but opposite trends in results. First one is the, large bottom plate slope 

zone (ζB =25°-20°) where aerodynamic responses increases as the width ratio (W) decreases. Another 

one is the small bottom plate slope (ζB =15°-11°) zone and the aerodynamic responses decreases as 

the width ratio (W) decreases. After analyzing static responses, next we examined the rms value of 

the steady state force coefficients and the Strouhal number (St). 

 

          The rms value of lift force (CL) and moment (CM) coefficients along with the Strouhal number 

(St) are plotted in Fig.4.24. The rms value of the steady state force coefficients also show similar 

trend in results like the mean value of drag (Fig.4.23(a)) as discussed earlier. For large bottom plate 

slope (ζB =25°-20°) the rms value increases and for small bottom plate slope (ζB ≤15°) the rms value 

decreases with the decrease in width ratio (W). Moreover, as the width ratio (W) decreases much 

wider range of bottom plate slope (ζB) experiences the least rms value. 

 

          However, the strouhal number (St) doesn‟t show any definite trend for large bottom plate slope 

(ζB =25°-20°), yet for small bottom plate slope (ζB ≤15°) the Strouhal number (StB) increases with the 

decreases in width ratio (W). The possible explanation could be, as the width ratio (W) decreases, the 

shape becomes more streamlined and the shedding the frequency (fv) increases, increasing the 

strouhal number (St). In the following section the surface pressure distribution of selected shapes are 

explored for better understanding the response we found in this section.  
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(a) Lift force coefficients 

 
(b) Moment coefficients 

  

 
(c) Strouhal number 

 

Figure 4.24: Influence of bottom plate slope (ζB) and width ratio (W) on rms value of steady state 

force coefficients and the Strouhal number 

 

 

4.2.1.2    Pressure Distribution 
 

Base on previous investigation we selected two bottom plate slopes from two distinct zones : i) ζB of 

25° and ii) ζB of 12° for detailed pressure field analysis. The surface pressure distributions of bottom 

plate slope (ζB) of 25° and 12°are summarized in Figs. 4.25 and 4.26, respectively for all four width 

ratios (W). Both of these bottom plate slopes (ζB of 25° and 12°) have similar pressure distribution 

except variation in magnitude and rather than the bottom surface the top surface pressure distribution 

is more influential. The large bottom plate slope (ζB of 25°) experiences larger suction at the leading 

edge top and bottom deck surface than the small bottom plate slope (ζB of 12°). 

 

          Based on Figs.4.25 and 4.26, the lift characteristics we found in Fig.4.23(b) can be explained 

well. For any value of bottom pate slope (ζB of 25° and 12°), as the width ratio (W) decreases the 

bottom deck suction increases dramatically and increases the negative lift value. Further, in case of 

small bottom plate slope (ζB of 12°), smaller pressure recoveries occur at the bottom deck trailing 

edge side as compared to the large bottom plate slope and resulting higher negative lift for small 

bottom plate slope (ζB of 12°) than the large bottom plate slope (ζB of 25°).  
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(a) Top surface pressure 

 
(b) Bottom surface pressure 

 

Figure 4.25: Mean surface pressure distribution for bottom plate slope  (ζB) of 25°  

 

 

 
(a) Top surface pressure 

 
(b) Bottom surface pressure 

 

Figure 4.26: Mean surface pressure distribution for bottom plate slope  (ζB) of 12° 

 

 

          The rms value of surface pressure distributions are plotted in Figs.4.27 and 4.28 for bottom 

plate slope (ζB) of 25° and 12°, respectively. The rms value of pressure also shows the similar 

characteristics we found in Figs.4.24(a) and (b) for large (ζB of 25°) and small (ζB of 12°) bottom 

plate slopes in relation to the width ratio (W). Like edge fairing, here also large rms value can be 

observed at the trailing edge side. We discussed earlier that the after-body vortex shedding activity is 

the main cause of large rms fluctuation of pressure at the trailing edge side. In the following section 

detailed flow field is analyzed.  

 

 

4.2.1.3    Velocity Distribution 
 

The time averaged velocity distribution for bottom plate slope (ζB) of 25° and 12° are plotted in 

Fig.4.29 for selected width ratio (W). For all of these sections, flow separation can be noticed at the 

leading and the trailing edge side. However, trailing edge side flow separation governs over the 

leading edge side. In case of large bottom plate slope (ζB of 25°) the bottom surface trailing edge 

separation is pronounced and increases as the width ratio (W) decreases. On the other hand, for small 

bottom slope (ζB of 12°) there is no trailing edge separation. For small bottom plate slope (ζB of 12°) 

the top surface trailing edge separation is curtail. However, as the width ratio (W) decreases the top 

surface trailing edge separation gradually decreases.  
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(a) Top surface pressure 

 
(b) Bottom surface pressure 

 

Figure 4.27: rms surface pressure distribution for bottom plate slope  (ζB) of 25° 

 

 

 
(a) Top surface pressure 

 
(c) Bottom surface pressure 

 

Figure 4.28: rms surface pressure distribution for bottom plate slope  (ζB) of 12° 

 

 

 
(a) Width ratio (W) of 1, ζB=25° 

 
(b) Width ratio (W) of 1, ζB=12° 

  

 
(c) Width ratio (W) of 0.7, ζB=25° 

 
(d) Width ratio (W) of 0.7, ζB=12° 

  

 
(e) Width ratio (W) of 0.5, ζB=25° 

 
(f) Width ratio (W) of 0.5, ζB=12° 

 

Figure 4.29: Comparison of time averaged velocity distributions around the bridge decks for bottom 

plate slopes (ζB) of 25° and 12°  
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          Based on this discussion we can explain the trend in results we obtained previously for drag 

(Fig.3.23(a)) and rms value (Figs.4.24(a) and (b)). For large bottom plate slope (ζB of 25°) as the 

width ratio (W) decreases the nose of the fairing goes up and the bottom surface trailing edge 

separation increases, increasing the vortex activity and wake size. Therefore, for large bottom plate 

slope (ζB of 25°) the drag and rms value of steady state force coefficients increases with the decrease 

in width ratio (W).  

 

          Similarly, for small bottom plate slope (ζB of 12°) as the width ratio (W) decreases the nose of 

the fairing goes up decreasing the top surface trailing separation without any bottom surface trailing 

edge separation. As a result the wake becomes smaller at smaller width ratio (W) resulting decrease 

in drag and rms value of steady state force coefficients. However, for bottom plate slope (ζB) of 12°, 

a width ratio (W) of 0.3 is required so that the nose location (y/D see Fig/4.21) becomes high enough 

and the top surface wake becomes less influential. There must be some margins of nose height (y/D), 

if the nose goes above that height the top surface wake becomes small and vortex becomes less 

influential when there is no trailing edge separaion.   

 

          By take the curl of the velocity vector ( U


 ), the vorticity distribution around the bridge deck 

can be obtained. Fig.4.30 shows the vorticity around the bridge deck for bottom plate slope (ζB) of 

14° and 12°. The nose locations (y/D) are indicated at the title of the corresponding figures. As can 

be seen for bottom plate slope (ζB) of 14° no clear after-body vortex activity can be noticed when the 

nose height (y/D) reaches to 0.47 for the width ratio (W) of 0.5. However, for the same width ratio 

(W) the bottom plate slope (ζB) of 12° has the nose height (y/D) of 0.42 and still shows clear after-  

 

 

 
(a) W=1, y/D=0.23, ζB=14° 

 
(b) W=1, y/D=0.2, ζB=12° 

  

 
(c) W=0.7, y/D=0.37, ζB=14° 

 
(d) W=0.7, y/D=0.33, ζB=12° 

  

 
(e) W=0.5, y/D=0.47, ζB=14° 

 
(f) W=0.5, y/D=0.42, ζB=12° 

  

 
(g) W=0.3, y/D=0.58, ζB=14° 

 
(h) W=0.3, y/D=0.51, ζB=12° 

 

Figure 4.30: Comparison of Vorticity plot around bridge deck for bottom plate slopes (ζB) of 14° 

and12°  
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body vortices. As the width ratio decreases further (W=0.3), the nose height (y/D) increases to a 

value of 0.51 and the after-body vortex activity weakens. Therefore, we can presume that for smaller 

bottom plate slope (ζB ≤15 ) i.e., the shapes without having the bottom surface trailing edge 

separation, nose should be tried to place on the upper half of the deck to obtain less aerodynamic 

forces and to reduce the after-body vortex activity. 

 

          Based on our analysis we found that for large width ratio (W=1) i.e., edge fairing, larger 

bottom plate slope (ζB=20°-25°) possess better aerodynamic response. However, for small width 

ratio (W≤0.7) i.e., streamlined deck, smaller bottom plate slope (ζB≤15 ) owns lesser aerodynamic 

responses. More precisely we would like to say that when the width ratio (W) decreases the bottom 

plate slope (ζB) also required to be decreased to obtain better aerodynamic response.  

 

          Before constructing long-span cable-supported bridges, their decks are often investigated in 

wind tunnel for selecting the most appropriate configurations. Therefore, to justify our outcomes, we 

plotted the relationships between the width ratio (W) and the bottom plate slope (ζB) in Fig.4.31(a) of 

practically constructed bridge we surveyed in chapter 2. Fig.4.31(a) clearly shows the positive slope 

of the plot i.e., as the width ratio (W) of the bridge deck decreases, the bottom plate slope (ζB) 

decreases too. 

 

          Based on above mentioned discussion and understanding, the trend of top plate slope (ζT) in 

practical bridges can also be predicted. The effectiveness of the top plate slope (ζT) appears mainly 

by keeping the nose up and decreasing the vortex size on the top fairing. Therefore, in case of edge 

fairing, by decreasing the top plate slope (ζT) aerodynamic performances can be improved as the 

nose goes (Shown already) upward. However, when the width ratio decreases, the nose of the fairing 

moves upward, as a result, the influence and applicability of top plate slope (ζT) decreases. Hence, 

the trend of the top plate slope (ζT) would be, for large with ratio (W=1) smaller top plate slope (ζT) 

should be used and for small width ratio (W≤0.7) large top plate slope (ζT) to reduce the size of the 

fairing from economic point of view. Fig.4.31(b) depicts the similar trend we predicted. 

 

 

 

4.2.2    Influence of Side Ratio (R) 
 

 

Previous all the simulations were conducted for a specific side ratio (R) of 5 and we got some trend 

in the results. Now it is important to explore does the trends in the result alters depending on the side 

ratio (R) or not. One new set of simulation was conducted for the bridge deck with a side ratio (R) of 

8 and width ratio of (W) of 0.55. The top plate slope (ζT) was set to 40° and the bottom plate slope 

(ζB) was varied from 25° to 11°. The Reynolds number was kept same as the previous sections.  

 

          Fig.4.32 presents the important force coefficients for side ratio (R) 5 and 8. The results of side 

ratio (R) of 8 are compared with side ratio (R) of 5 with a width ratio (W) of 0.5. As can be seen 

from the figure the trend in the results remains almost unchanged when the side ratio (R) alters from 

5 to 8 for the same width ratio (W). It should be also noted that even though the width ratio is same 

the nose locations are different from the same bottom plate slopes (ζB). However, as we can notice 

from the figure the variation of the nose location doesn‟t affect the trend in results.  

 

          Therefore, the results we presented in the last section for side ratio (R) of 5 with various width 

ratios (W), can be utilized for explaining the response of the bridge deck with higher side ratio (R) by 
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maintaining similarities in width ratio (W). Fig.4.33 compares the time averaged velocity field 

around the bridge decks for a bottom plate slope (ζB) of 14°. The bridge deck with side ratio (R) of 8 

possess a bit smaller wake as compared to the side ratio (R) of 5 as the nose goes up for higher side 

ratio (R), yet the overall flow behavior is quite similar.  

 

 

 
(a) W vs. ζB 

 
(b) W vs. ζT 

 

Figure 4.31: Relationship between the width ratio (W) and the inclined plate slopes (ζB and ζT) of 

practically constructed streamlined bridge decks 

 

 

 
(a) Mean value of drag force coefficients 

 
(b) Mean value of moment coefficients 

  

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 4.32: Influence of side ratio (R) on steady state force coefficients 
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(a) R=5, W=0.5 

 
(b) R=8, W=0.55 

 

Figure 4.33: Comparison of time averaged velocity distributions around the bridge deck for side 

ratio (R) of 5 and 8 with a bottom plate slope (ζB) of 14°  

 

 

 

4.2.3    Influence of Reynolds Number (ReB) 
 

 

In previous sections, all the simulations were conducted at a particular wind velocity that means 

Reynolds number (Re) was same. However, practical bridges experiences very large Reynolds 

number during their design life time and important aerodynamic instability such as flutter also 

occurs at high Reynolds number (ReB). Therefore, it is worthy to explore the Reynolds number (ReB) 

effects on bridges decks.  

 

          Conducting simulation at high Reynolds number (ReB) is quite expensive as large numbers of 

grids are required to model the thin boundary layer and to make the simulation stable, small time 

step is demanded. It is quite ambitious to conduct simulation at high Reynolds number (ReB) for large 

number of sections to observe the trend in results. In the last sections we already explored the flow 

field and found some important flow features such as the deck top surface leading edge separation, 

deck bottom surface leading and trailing edge separations. Further, we also interpreted their roles on 

steady state responses. Therefore, it is more rational to investigate the Reynolds number (ReB) effects 

for a particular section and observe how those important flow features behaves. With this intention, 

we investigated the Reynolds number (ReB) effects on a streamlined deck with a bottom plate slope 

(ζB) of 14°. The Reynolds number (ReB) was altered from 1.65x104 to 16.5x104 by varying the inlet 

wind velocity (U).  

 

          Fig.4.34 plots the mean and rms value of steady state force coefficients versus the Reynolds 

number (ReB). The mean value of the coefficients becomes almost Reynolds number (ReB) 

independent beyond a value of 13.0x104. Except the drag, the rms value of lift and moment also have 

similar tendency. To understand the trend in mean value of steady state force coefficients, the time 

averaged velocity distributions are plotted for three Reynolds number values in Fig. 4.35. 

 

          Fig.4.35 shows that the bottom surface leading and the trailing edge is mostly affected due to 

increase in Reynolds number (ReB). To visualize the effects more clearly, the boundary layer velocity 

distributions are plotted in Fig.4.36. Fig.4.36(a) depicts that as the Reynolds number (ReB) increases 

the top surface leading edge separation increases, yet the flow reattachment tendency increases 

(Fig.4.36(b)). The bottom surface leading edge separation also increases with the increases in 

Reynolds number (ReB). However, the bottom deck trailing edge side separation decreases and stops 

completely when the Reynolds number (ReB) increases and reaches up to value of 13.0x104, 

respectively. 

 

           Schewe and Larsen (1998) and Schewe (2001) carried out wind tunnel investigation to 

visualize the Reynolds number effects on bluff bodies and trapezoidal bridge decks by oil flow 

experiment. For the trapezoidal bridge section the experiment was carried out up to transcritical 
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range of Reynolds number (ReB). Their observation is summarized is Fig.4.37. Their Reynolds 

number (ReB) was quite high, even though our findings agree well with their experimental results. 

Specially, at the bottom surface leading and the trailing edge side it has very good agreement. 

However, at the top surface leading edge side, we found that both the separation and reattachment 

increases with the increases in Reynolds number (ReB). Similarly, they also found that reattachment 

tendency increases, yet the separation tendency decreases with the increases in Reynolds number 

(ReB). The possible reason of variation could the variation in deck shape, as our bridge deck has a 

much longer fairing as compared to their one. Still, the present simulation could reproduce the 

overall effects of Reynolds number (ReB) on flow field quit accurately. 

 

 

 
(a) Mean value 

 
(b) rms value 

 

Figure 4.34: Reynolds number effects (ReB) on mean and rms value of steady state force coefficients 

 

 

 
(a) ReB of 3.3x104 

 

 
(b) ReB of 6.0x104 

 

 
(c) ReB=13x104 

 

Figure 4.35: Reynolds number effects on time averaged velocity field for a bottom plate slope (ζB) of 

14° 
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(a) Top surface leading edge  

 
(b) Top surface leading edge 

  

 
(c) Bottom surface leading edge 

 
(d) Bottom surface trailing edge 

 

Figure 4.36: Reynolds number (ReB) effects on various important flow features for streamlined deck 

 

 

 
 

Figure 4.37: Reynolds number effects on flow field of a bridge section obtained by Schewe (2001). 

The Reynolds number (ReB) in the figure increases from left to right up to a value of 15x105 

 

 

          Based on this observation, the trend in mean value of steady state force coefficients can easily 

be explained. As the Reynolds number (ReB) increases the bottom surface trailing edge separation 

decreases, decreasing the wake size and thereafter decreases the drag. While the leading edge bottom 

surface separation increases with the increase in Reynolds number (ReB) that increases the negative 

lift value. Therefore, there would be some differences in flow field for low wind speed and high 

wind speed aeroelastic phenomena. For example, at vortex shedding wind speed range for small 

bottom plate slope (ζB≤15 ), small separation may exist at the trailing edge side. On the other hand, 

at flutter wind speed range that separation will stop completely. For a deck with too small bottom 

plate slope (ζB˂˂15°) that variation of separation at the trailing edge due to Reynolds number (ReB)  
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may not exists or will be negligible. However, the decrease in trailing edge separation may increase 

the flutter wind speed or not and its role of flutter instability is not clear yet. In chapter 6, their 

probable roles on dynamic response are investigated.    

 

 

 

4.3    Concluding Remarks 
 

 

In this chapter, the influence of various shaping parameters on steady state responses and flow field 

were presented. Primarily, the effects of top plate slope (ζT), bottom plate slope (ζB), width ratio (W) 

and Reynolds number (ReB) on steady state responses were examined. Flow fields were analyzed in 

detailed in terms of pressure and velocity distribution for understanding the obtained aerodynamic 

responses.   

 

          We found for deck with fairing there are three important flow features: i) Top surface leading 

edge flow separation, ii) Bottom surface leading edge flow separation and iii) bottom surface trailing 

edge flow separation. The leading edge separations affect the mean value of the steady state force 

coefficients and the trailing edge bottom surface separation affects the drag and the rms value of the 

fluctuations. In addition the lift value is also affected the by boundary layer flow velocity depending 

on the orientation of the top (ζT) and bottom (ζB) plate slope. For any combination of top (ζT) and 

bottom (ζB) plate slope, the flow moves faster on the smaller slope side surface and increases the lift 

value normal to that side.   

 

          For large width ratio (W=1), larger bottom plate slopes (ζB=20°-25°) experiences less drag, 

nominal negative lift and less after-body vortex activity. For this range of bottom plate slopes (ζB), 

the bottom surface trailing edge separation remains small and the nose stays relatively higher 

position, decreasing the space to form vortices on the top surface trailing edge and improves the 

aerodynamic performance comparatively. By using smaller top plate slope (ζT≤40°), the nose 

location can be shifted further upward and aerodynamic responses can be bettered for edge fairing.  

 

          On the other hand , for streamlined deck, as the width ratio (W) decreases the nose goes too 

high for large bottom plate slopes (ζB=20°-25°). As a result, the flow separates completely at the 

bottom surface trailing edge and aerodynamic performance deteriorates. For small width ratio 

(W≤0.7) bridge deck, small bottom plate slopes (ζB≤15 ) works better. For small bottom plate slope 

(ζB≤15 ) as the width ratio (W) decreases the nose goes up and the vortex formation area on the top 

surface trailing edge decreases, yet the bottom surface trailing edge flow doesn‟t separates 

massively. Therefore, wake becomes small and improves the aerodynamic behavior. Further, for 

small bottom plate slopes (ζB≤15 ) when the nose goes on the upper half of the deck (y/D>0.5), the 

top surface trailing edge vortex becomes less influential and improves the response significantly, 

decreasing the importance of top plate slope (ζT).  

 

          The trend we found in the results didn‟t alter significantly depending on the types of handrail 

and side ratio (R). However, Reynolds numbers affected the responses noticeably. At high Reynolds 

(ReB≥20x105) number the leading edge top and bottom surface separation increases and the bottom 

surface trailing edge separation decreases. At low Reynolds number (ReB≤6x10
4) the bottom surface 

trailing edge flow separation stops partially for small bottom plate slope (ζB≤15 ) as boundary layer 

separation still exists. However, at high Reynolds number (ReB≥20x10
4) that trailing edge separation 

stops completely for the bridge deck with small bottom plate slope (ζB≤15 ). 
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          From the flow field analysis we found a number of important flow features such as the leading 

edge top and bottom surface separations and the trailing edge bottom surface separation. We 

clarified their roles on steady state responses and behavior due to increase in Reynolds number (ReB). 

However, their roles on dynamic responses such as vortex induced vibration and flutter instabilities 

are not clear yet. In chapter 6 their possible roles on dynamic responses are tried to clarify.  



 

 

 

 

 

Chapter 5 

 

Bridge Deck Shaping Effects on 

Aerodynamics: Without Fairing 

 

 
 

Cable-supported bridges are one of the most popular and widely used bridge configurations adopted 

by engineers for medium to long span bridges. However, they are aerodynamically vulnerable due to 

their inherent flexibility. The bridge deck should be shaped to reduce aerodynamic loading and 

susceptibility to aero-elastic phenomenon such as vortex shedding and flutter instability. Usually, the 

bridge decks are shaped as streamlined by adjusting the bottom plate slope of the bridge deck and 

fairings are attached at the side of the bridge deck to control the flow and to improve the 

aerodynamic stability as we discussed in the last chapter. However, addition of these extra devices 

increases the construction and maintenance cost. 

 

          Therefore, along with the streamlined deck with fairing, bridge decks are also shaped without 

fairing for example Adige Bridge in Italy (Patruno 2015). Specially, in Japan a number of bridge 

decks have been shaped without fairing in hexagonal shape such as Takeshima Ohashi Bridge, 

Shintenmom Bridge, Oshima Bridge, Kesennuma Bridge and Ikara Ohashi Bridge etc. Basically, the 

concept came from the pentagonal shaped bridge deck (without fairing) proposed by Kubo et al. 

2007. For these type of deck, the bottom deck flow is controlled by the bottom plate slope (ζB), 

whilst the top deck flow is controlled by positioning the curb on the top deck, this technique is 

known as separation interference method (SIM) (Yoshida et al. 2006 and Kubo et al. 2008).  
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          Like the streamlined bridge deck (with fairing), the pentagonal and hexagonal bridge decks 

(without fairing) also have similar shaping parameters i.e., the bottom plate slope (ζB) and the width 

ratio (W). However, the fluid flow behavior around the bridge deck without fairing would be 

different from the bridge deck with fairing. Therefore, the trend in the results we found in the last 

chapter due to variation of shaping parameters may alter. Further, this kind of bridge decks has new 

shaping parameters such as the curb angle (β) and the curb height (h/D). Therefore, we carried out 

detailed investigation on shaping effects of bridge deck without fairing on its aerodynamics.  

 

          In this chapter the detailed investigation results for bride decks without fairing are presented. 

The chapter is broadly divided into two parts. In the first half of the chapter we deal with the 

pentagonal shape bridge deck and its aerodynamics. In the second half of the chapter, we focus on 

the aerodynamic response and flow field of the hexagonal shaped bridge deck. Along with shaping 

aspects, we also examined some other important issues such as Reynolds number effects and the 

influence of inspection rails on the aerodynamics of bridge deck without fairing. Most of the 

simulations were conducted at a Reynolds number (ReB) of 6.0x104. The grids were generated by 

following the strategy presented in chapter 3 and had an average y+ value of near about 2 and a 

maximum y+ value of around 8.2 around the bridge deck boundary. Numerical setup similar to 

chapter 3 was used for simulating the fluid flow around the bridge deck.  

 

 

 

5.1    Behavior of Pentagonal Bridge Deck 
 

 

An aerodynamically stable deck shape for cab-stayed bridge was proposed by Kubo and his 

associates (Yoshida et al. 2006; Kubo et al. 2007 and Noda et al. 2009) as shown in Fig.5.1. For this 

section no additional devices are required to increase the aerodynamic stability of the deck. One of 

the advantageous points in this type of shape is that it exhibits negative lift values at high wind 

speed. Therefore, at high wind speeds the cable tension and total stiffness of the bridge system 

increases. Kubo et al. (2007) also showed the influence of bottom plate slope (ζB) on flutter and 

vortex shedding behavior using wind tunnel experiments. They found that a bottom plate slope (ζB) 

of 12º has the lowest aerodynamic loading (specially, the drag was the lowest) and high flutter wind 

speed.  

 

          Then, Noda et al. (2009) and Noda (2010) clarified the cause of negative lift value from 

surface pressure distribution and PIV measurement for a pentagonal shaped bridge deck with a 

bottom plate slope of 14°. Their findings showed that it was the separated shear layer at the leading 

edge bottom toe that generates suction and increases the negative lift value. Form the PIV 

experiments of Noda et al. (2009) some of the flow mechanisms were identified.  

 

          However, there is more to reveal about the aerodynamics of this type of section. Noda et al. 

(2009) showed the role of the leading edge bottom deck separation on static lift force at a particular 

Reynolds Number (ReB). Even so, there were a number of other flow features such as top deck 

leading edge separation and bottom deck trailing edge separation. Their behavior and role on 

aerodynamic response is not yet clear. Further, Kubo et al. (2007) showed that all the steady state 

force coefficients exhibited very high sensitivity, when the bottom plate slope (ζB) was altered at 

flutter wind speed. All of those flow features will have a role in controlling the static and dynamic 

aerodynamic response of the bridge deck. Further the Reynolds number (ReB) effect is also required  
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Figure 5.1: Cross-section of the pentagonal bridge deck and important notations 

 

 

to be clarified as the bridges are required to operate over a wide range of Reynolds number (ReB). 

 

          Furthermore, the effectiveness and flow mechanism of curb angle (β) was demonstrated based 

on a square cylinder of side ratio (R=B/D of 1) (Kubo et al. 2008). For a small side ratio (R≈1) 

cylinder the separated shear layer at the leading edge goes directly at the downstream of the body, 

yet for bridge deck section with large side ratio (R≥5) the flow reattaches at the side of the cylinder. 

The effectiveness of curb angle (β) and flow field for the bridge deck section would be different 

from that of a small side ratio bluff body. Moreover, depending on the curb height the response will 

also differ. In the following sections these issues are discussed one by one.  

 

 

 

5.1.1    Influence of Bottom plate Slope (θB) 
 

 

In this section, the effect of bottom plate slope (ζB) on steady state force coefficients and flow field 

is demonstrated at a Reynolds number (ReB) of 3.9x104. Three curb angles (β) of 27°, 30° and 33° 

were checked and the curb height (h/B) was set to 0.025. The bottom plate slope (ζB) was varied 

from 10º to 16º by varying the side ratio (R) from 6.45 to 4.75, respectively. The depth (D) of the 

deck was varied to alter the bottom plate slope (ζB) without changing the width (B) and the side 

depth (a/B) of the deck. The side depth (a/B) height was set to 0.067. In past experimental work 

(Yoshida et al. 2006 and 2007) the bottom plate slope was varied by following the same procedure. 

These results may have a side ratio (R) effect, however, to maintain coherence with past 

experimental work the same procedure was chosen. 

 

 

5.1.1.1    Steady State Force Coefficients 
 

The mean and rms value of steady state force coefficients for varying bottom plate slopes (ζB) are 

plotted in Fig.5.2. As can be seen the bottom plate slope (ζB) has much larger influences on force 

coefficients rather than the curb angle (β). However, the smaller curb angle (β) of 27° has less 

aerodynamic responses. Kubo et al. (2007) also found that a curb angle (β) of 27° had slightly higher 

critical flutter wind speed than the other curb angles (β). The discussion about the curb angel is not 

deepened here, in the next section the influence of curb angle and height are discussed in detailed.  

 

          Fig.5.2 depicts that the smaller bottom plate slope (ζB) has less magnitude of force 

coefficients, regardless of the curb angle (β). For any value of bottom plate slope (ζB) from 16º to 

10º, the deck experiences a negative lift. In Fig. 5.2(d) and (f) the rms value of lift and moment 

decreases significantly as the bottom plate slope (ζB) decreases. Like streamlined section, here also  
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(a) Mean drag force coefficients 

 
(b) Strouhal number 

  

 
(c) Mean lift force coefficients 

 
(d) rms value of lift force coefficients 

  

 
(e) Mean value of moment coefficients 

 
(f) rms value of moment coefficients 

  

 

Figure 5.2: Influence of bottom plate slope (ζB) on mean and rms value of steady state force  

coefficients  

 

 

we found that small bottom plate slope (ζB) possess better aerodynamic responses, yet as compared 

to streamlined deck in case of pentagonal deck much smaller value of bottom plate slope (ζB) is 

required to obtain the lest response.   

 

           In the literature experimental data of flutter wind speed for varying bottom plate slope (ζB) is 

available; hence we took this opportunity to compare the trend in the result with the literature. Past 

experimental work has shown that flutter wind speed increases as the bottom plate slope (ζB)  
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decreases and vortex shedding instability stops for a bottom plate slope (ζB) of smaller than 19° 

(Yoshida et al. 2006, Kubo et al. 2007 and Noda et al. 2010). Fig.5.3 shows that a deck with a curb 

angle (β) of 30º the reduced flutter wind speed increases as the bottom plate slope (ζB) decreases. 

The present rms value of lift and moment has similar trends in the result of the flutter wind speed 

obtained previously (Kubo et al. 2006 and 2007). But it should be noted that this similarities in the 

results can‟t be considered as a general case.    

 

 

5.1.1.2    Pressure Distribution 
 

          The mean and rms values of surface pressure distribution for the selected deck sections with a 

bottom plate slope (ζB) of 11°,12°,14° and 16º are plotted in Figs.5.4 and 5.5, respectively. In the 

case of mean surface pressure the bottom deck pressure is more influential than the top deck surface 

when the bottom plate slope (ζB) is altered. The mean surface pressure distribution is mainly affected 

at the leading and trailing edge of the deck due to variation of the bottom plate slope (ζB). As the 

bottom plate slope decreases (as a/D ratio increases) the bottom deck leading edge side negative 

pressure area increases and the trailing edge side negative pressure decreases. Basically, this kind of 

negative pressure indicates the separation of the shear layer from the deck surface.  

 

          Based on the mean surface pressure the trend in steady state force coefficients can also be 

explained. For example, for a small bottom plate slope (ζB=11°) the deck experiences an increased 

downward force (negative pressure increases) at the leading edge side bottom surface and a 

decreased downward force (negative pressure decreases) at the trailing edge side bottom surface. As 

a result the overall positive moment (anti-clockwise) tendency of the deck increases, that decreases 

the negative moment value (Fig.5.2(e)). Similarly, as the leading edge side negative pressure 

increases the negative lift (downward) value tendency increases for a small bottom plate slope (ζB) 

of 11°.  

 

          Unlike the mean surface pressure the rms pressure is actually affected at the trailing edge side 

as shown in Fig.5.5. As the bottom plate slope (ζB) decreases, the trailing edge side rms value also 

decreases. This should be due to the after-body vortices activity as we already discussed in chapter 4. 

The instantaneous velocity distributions along one lift cycle are plotted in Fig.5.6 for the bridge deck 

with a bottom plate slope (ζB) of 14° to reconfirm the idea.  

 

 

 
 

Figure 5.3 Influence of bottom plate slope (ζB) on flutter wind speed (U/fB) for curb angle (β) of 30º 

based on the  experimental work by Kubo et al. (2007) 
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Figure 5.4: Mean surface pressure distribution around the bridge deck section with a curb angle (β) 

of 27° for various bottom plate slopes (ζB) 

 

 

 
 

Figure 5.5: rms surface pressure distribution around the bridge deck section with a curb angle (β) of 

27° for various bottom plate slopes (ζB) 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 5.6: Instantaneous velocity field for deck shape having bottom plate slope (ζB) of 14° along 

one lift cycle at 0°(a), 90°(b), 180 (c) and 270°(d) 
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5.1.1.3    Velocity Distribution  
 

The time averaged velocity fields for the selected bridge deck sections are plotted in Fig.5.7. The 

velocity distribution agrees well with mean pressure distribution as shown in Fig.5.4 and makes it 

easier to understand the mean and rms pressure distributions. As can be seen the wake size decreases 

as the bottom plate slope decreases and the deck experiences smaller rms fluctuations. The reason of 

a smaller wake size at the smaller bottom plate slope is due to the decrease in the trailing edge side 

flow separation. As a result the vortex may form just after the deck with smaller size rather than very 

close to the trailing edge bottom deck surface as shown in Fig.5.7(c). For streamlined bridge deck, 

we also found similar tendency as shown in chapter 4. Therefore, at bottom plate slope (ζB) of 19° 

the after-body vortex size would increase further and may excite the structure to vibrate. That‟s how 

Kubo et al. (2007) observed vortex induced vibration for bridge deck with a bottom plate slope (ζB) 

of 19°. To observe the flow field for large bottom plate slope (ζB=19°), one more simulation was 

conducted at a bottom plate slope (ζB) of 19° and the flow field is compared along with the other 

decks in Fig.5.7(d). The figure reflects the thought we approximated.  

 

          Figs.5.8 and 5.9 displays the velocity distribution at the trailing edge and 0.5D downstream of 

the deck. The flow separation can be seen clearly at the trailing edge and decreases gradually as the 

bottom plate slope (ζB) decreases. Thus the wake size decreases as shown in Fig.5.9. As a result both 

the drag and the rms value of steady state force coefficients decreases. This implies that the deck 

having smaller wake may require a larger wind speed for flutter to occur. This guess is also 

applicable for streamline bridge deck as we discussed earlier. However, this is just a conjecture 

based on present observations and demands a further elaborate investigation.  

 

          In this section we obtained some trends in the steady state force coefficients and we could 

clarify them through an analysis of the pressure and velocity distributions. However, we found the 

minimum drag value for a bottom plate slope (ζB) of 11°, while Kubo et al. (2007) found the 

minimum drag at a bottom plate slope of 12 . We shouldn‟t miss the point that experimental results  

 

 

 
(a) Bottom plate slope (ζB) of 12° 

 
(b) Bottom plate slope (ζB) of 14° 

  

 
(c) Bottom plate slope (ζB) of 16° 

 
(d) Bottom plate slope (ζB) of 19° 

 

Figure 5.7: Influence of bottom plate slope (ζB) on time averaged flow field around the bridge decks 
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Figure 5.8: Influence of bottom plate slope (ζB) on trailing edge separation 

 

 

 
 

Figure 5.9: Influence of bottom plate slope (ζB) on the wake size of the bridge deck 

 

 

were carried out at the flutter wind speed range. There must be some Reynolds number effects. This 

issue is discussed elaborately later in a section dedicated particularly for discussing Reynolds 

number (ReB) effects. In the following sections, the influence of curb angle (β) and curb height (h/D) 

on aerodynamics are introduced. 

 

 

 

5.1.2    Influence of Curb Height (h/D) 
 

 

From the practical point of view, there is not much room to change the location and height (h/D) of 

the curb. In fact, they are always tried to put at the end of the deck to maximize the usable area and 

the curb can‟t be too high. The height of the curb (h/D) was increased gradually from 0 to 0.2 

without changing the curb angle (β) as shown in Fig.5.10. The curb angle (β) and bottom plate slope 

(ζB) was set at 30° and 11°, respectively. All the simulations were conducted for a bridge deck with a 

constant side ratio (R) of 5. The simulations were performed at a Reynolds number (ReB) of 6.0x104.  
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          Fig.5.11 shows the relations between the steady state force coefficients and the curb heights 

(h/D). The curb height (h/D) affects the force coefficients significantly. Specially, the lift force 

coefficient is affected the most. In Fig.5.11(b) the moment increases gradually as the curb height 

(h/D) increases. However, the drag and lift force coefficients exhibited the most important trend in 

the result. Both the drag and lift force value decreases with the increase in curb height and reaches to 

a minimum value at a curb height (h/D) of 0.1. Then, the drag and lift value increases again with the 

further increase in curb height (h/D). However, the rms value doesn‟t vary noticeably beyond a curb 

height (h/D) of 0.1.   

 

 

 
 

Figure 5.10: Procedure of changing curb height (h/D) for a fixed curb angle (β=30°) 

 

 

 
(a) Mean value of drag force coefficients 

 
(b) Mean value of moment coefficients 

  

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 5.11: Influence of curb height (h/D) on mean and rms value of steady state force coefficients 
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          The wind speed ratios for the selected curb heights (h/D) are shown in Fig.12. As can be seen 

when there is no curb is attached to bridge deck it experiences very large leading edge top surface 

separation. However, the separation decreases significantly when an optimum curb height (h/B) of 

0.1 is attached to the bridge deck. As a result the negative lift value increases. Unlike short bluff 

bodies, for elongated bluff bodies the SIM enhances the flow reattachment tendency and improves 

the aerodynamic response. For curb height (h/D) larger than 0.1, the leading edge separation 

increases again and the negative lift value decreases as a consequence. When the curb is attached to 

the bridge deck, it not only affects the leading edge flow field but also the trailing edge flow field. 

Fig.5.13 plots the boundary layer velocity distribution at the trailing edge of the bridge deck. As can 

be seen for a curb height (h/D) of 0.1 the bridge deck possesses the lowest separation and wake size. 

As a result the deck experiences the minimum drag force for a curb height of 0.1.  

 

 

 
(a) No curb (h/D=0) 

 

 
(b) With curb (h/D=0.1) 

 
(c) With curb (h/D=0.15) 

 

Figure 5.12: Influence of curb height (h/D) on wind speed ratio around the bridge decks 

 

 

 
 

Figure 5.13: Influence of curb height (h/D) on trailing edge slow separation 
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5.1.3    Influence of Curb Angle (β)  
 

 

Curb angle (β) was varied from 20º to 40º at an interval of 5º to investigate the influence of curb 

angle (β) on steady state force coefficient for a bridge deck with a side ratio (R) of 5. The curb height 

(h/D) was kept fixed at 0.125 and the curb angle was varied by shifting the curb location. Two 

bottom plate slopes (ζB) of 11º and 14º were utilized as smaller bottom plate slope had better 

aerodynamic behavior. Simulations were performed at a Reynolds number (ReB) of 6.0x104.  

 

          Fig.5.14 shows the selected steady state force coefficients for various curb angles (β). As can 

be seen the bottom plate slope (ζB) has higher influences on steady state force coefficients than the 

curb angle (β) as we found earlier. Curb angle (β) doesn‟t noticeably affect the mean value of drag 

and the moment coefficients, yet affects the mean value of lift at the present Reynolds number (ReB). 

The deck experiences minimum lift forces for a curb angle (β) of 30° to 25°. At larger curb angle (β) 

the mean value of lift increases and the rms value decreases slightly. To understand this kind of trend 

in results, the wind speed ratios are plotted in Fig.5.15. Similar to curb height (h/D), here also the 

variation of curb angle (β) mainly affects the top deck leading edge flow separation. The flow 

mechanism for curb angle (β) is quite similar to the curb height (h/D). For a specific range of curb 

angle (β=30°-25°) the top deck leading edge separation remains small, as a result the negative lift 

 

 

 
(a) Mean value of drag force coefficients 

 
(b) Mean value of moment coefficients 

  

 
(c) Mean value of lit force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 5.14: Influence of curb angle (β) on steady state force coefficients 
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(a) Curb angle (β) of 40° 

  

 
(b) Curb angle (β) of 27° 

 
(c) Curb angle (β) of 20° 

 

Figure 5.15: Influence of curb angle (β) on wind speed ratio around the bridge decks 

 

 

value increases. Beyond that range of curb angle, the separation increases, decreasing the negative 

lift value of the bridge deck.  

 

 

 

5.1.4    Influence of Reynolds Number (ReB) 
 

 

Simulations were carried out for five different Reynolds numbers (ReB = 1.9x104 – 20x104) to show 

the trend in the results due to increase in Reynolds number (ReB). Particularly, for exploring 

Reynolds number (ReB) effects on the mean steady state force coefficients and the flow field. 

Investigation was conducted for one specific deck shape with a side ratio (R) of 5 and bottom plate 

slope (ζ) of 11°. The Reynolds number (ReB) was increased by increasing the inlet velocity and 

keeping the dimension of the bridge decks same. For the Reynolds number (ReB) up to 6.0x104, the 

average y+ value was around 2. For higher Reynolds numbers (ReB) of 13x104 and 20x104 the first 

grid height (y) was decreased, yet the average y+ value reached up to about 2.8 and 4.1, respectively. 

 

          Fig.5.16 depicts the influence of the Reynolds number (ReB) on steady state force coefficients. 

The dependency of the response on Reynolds number (ReB) can be seen clearly in Fig.5.16. 

However, the general tendency looks almost similar to streamlined bridge deck. Both the mean and 

rms response become almost independent of the Reynolds number (ReB) for a value higher than 

13x104. The mean value gradually decreases as the Reynolds number (ReB) increases until a value of 

13x104, then becomes stable. The lift force coefficient (CL) remains negative as the Reynolds 

number (ReB) increases. This is good sign that even at a higher velocity the bridge will experience 

even larger downward forces increasing the total stiffness of the bridge system.  

 

          Based on our investigation we found some important aerodynamic flow features for 

pentagonal bridge deck such as the leading edge top surface separation, the bottom surface leading 

and trailing edge separation. Fig.5.17 represents the mean velocity distribution for three Reynolds 

numbers (ReB). As can be seen the increase in Reynolds number affects the flow field noticeably at  
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(a) Mean value 

 
(b) rms value 

 

Figure 5.16: Influence of Reynolds number (ReB) on steady state force coefficients 

 

 

 
(a) ReB of 1.9x104  

  

 
(b) ReB of 6.0x104 

   

 
(c) ReB of 13x104 

 

Figure 5.17: Influence of Reynolds number (ReB) on flow field for the pentagonal bridge deck 

 

 

high Reynolds number (ReB) range (≥13x104). The top deck shear layer separation length decreases 

as the Reynolds number increases. The decrease in the top deck separation length strengthens the 

concepts of Separation Interference Method (SIM), even at high wind speed. 

 

          To clarify the Reynolds number (ReB) effects on the flow features more precisely, the velocity 

distributions are plotted at three different locations in Fig.5.18. As can be seen the flow behavior is 

quite similar to the streamlined bridge deck. Clear flow separation can be seen for small Reynolds 
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number (ReB≤6.0x10
4) both at the top deck leading edge side and bottom deck trailing edge the, yet 

the flow separation decreases and stops at the high Reynolds number (ReB of 13x104). However, the 

bottom deck leading edge side separation increases with the increase in Reynolds number (ReB). This 

increase in bottom surface leading edge separation and decrease in top deck leading edge separation 

increases the downward lift force, while the decrease in bottom deck trailing edge flow separation 

reduces the after-body wake size and directly affects the mean drag value resulting in a smaller 

value. Similar phenomena were observed by Schewe (2001) as we discussed in the last chapter.  

 

          In section 5.1.1 we found that a bottom plate slope (ζB) of 11° has the least rms response due 

to small trailing edge flow separation at a Reynolds number (ReB) of 3.9x104. At high Reynolds 

number (ReB =13x105) the trailing edge flow separation stops completely and forms boundary layer 

(Fig.5.18(c)). Based on this explanation it can be presumed that at a higher Reynolds number 

(ReB=20x104), the separation may stops at bottom plate slope (ζB) larger than 11°. As a result, the  

 

 

 
(a) Top surface leading edge 

  

 
(b) Bottom surface leading edge 

 
(c) Bottom surface trailing edge 

 

Figure 5.18: Influence of Reynolds number (ReB) on various flow features 
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drag decreases due to decrease in relative wake size (as a larger bottom plate slope has a smaller a/D 

ratio). Therefore, at a high Reynolds number (ReB≥20x10
5) the optimum aerodynamic response can 

be found at a bottom plate slope (ζB) higher than 11°. This could be a possible explanation why 

Kubo et al. (2007) obtained the least drag force at a bottom plate slope (ζB) of 12°. 

 

 

 

5.2 Behavior of hexagonal Bridge Deck 
 

 

In the last section we demonstrated the responses and flow behavior for the pentagonal bridge deck 

for various shaping parameters and flow conditions. Like past experimental work (Yoshida et al. 

2006 and Kubo et al. 2007), we also found that for the pentagonal bridge deck a small bottom plate 

slope (ζB) of around 12° possess better aerodynamic behavior at high Reynolds number (ReB). Based 

on past experimental observation, the bottom plate slope (ζB) has been placed at around 12°for a 

number of practically constructed bridge decks.   

  

          However, practically constructed bridges are hexagonal in shape as sown in Fig.5.19. In 

variation to the pentagonal shape, the hexagonal shape owns one more new shaping parameter i.e., 

the width ratio (W=b/B) as defined previously. In the last chapter we showed that depending on the 

width ratio (W) the trend in the result alters a lot for the streamlined bridge deck. Moreover, we also 

provided the survey results for this type of bridge decks in chapter 2 showing that the width ratio (W) 

varies noticeably. Therefore, question arises how the response and the trend in the results alters 

when the deck shape is altered from pentagon to hexagon.   

  

          In this section we present the detailed investigation results on the hexagonal shaped bridge 

deck for various shaping parameters. The pentagonal and hexagonal bridge decks were connected 

through the width ratio (W). For a pentagonal shape bridge deck the width ratio (W) is 0, as it doesn‟t 

have any bottom horizontal plate width (b). A width ratio (W) value higher than 0 indicates the 

bridge deck is hexagonal in shape. Both the influence of width ratio (W) and bottom plate slope (ζB) 

were considered. Practical issue such as the influence of side ratio (R), handrail and inspection rail 

were also taken into account. All the simulations were conducted at a Reynolds number (ReB) of 

6x104 and the side ratio (R) was kept fixed at 5.  

 

 

 

5.2.1    Influence of Width Ratio (W) 
 

 

The width ratio (W) ratio was varied from 0 to 0.3. The maximum value of width ratio was selected 

based on the survey results as presented in chapter 2. For each width ratio (R), the bottom plate slope 

(ζB) was varied from 20° to 10° as shown in Fig.3.20. The curb angle (β) and height (h/D) was set to 

30° and 0.1, respectively. It is worthy to mention that in case of streamlined deck the width ratio was 

decreased gradually, yet for this type of bridge deck the width ratio (W) was increased from 0 to 0.3. 

Further, the nose location goes down (y/D) for this type of bridge deck with the increase in width 

ratio (W) 

 

          Fig.5.21 demonstrates the influences of width ratio (W) and bottom plate slope (ζB) on steady 

state characteristics of the force coefficients. Like streamlined bridge, hexagonal bridge deck also  
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Figure 5.19: Cross-sectional view of the hexagonal bridge deck and importation notations 

 

 

 
(a) W=0 (Pentagonal Shape) 

  

 
(b) W=0.15 (Hexagonal Shape) 

 
(c) W=0.3 (Hexagonal Shape) 

 

Figure 5.20: Procedure changing the width ratio (W) and bottom plate slope (ζB) for deck without 

fairing 

 

 

shows sensitivity to the width ratio (W). However, the sensitivity of bottom plate slope (ζB) 

decreases significantly as the width ratio (W) increases i.e. shifts from pentagon to hexagon. This is 

because, as the with ratio increases the length of the bottom plate slope (ζB) decreases (Fig.5.20), as 

a result the sensitivity of the bottom plate slopes (ζB) on steady state force coefficients decreases too.  

 

          Another important trend is as the deck changes from pentagonal (W=0) to hexagonal shape 

(W=0.15 and 0.3), the location of minimum drag and rms value of the force coefficients shifts from 

small to larger bottom plate slope (ζB) of around 13°. Further, depending on the width ratio (W) 

value the trend and magnitude doesn‟t vary noticeably for hexagonal bridge decks (W=0.15 and 0.3). 

However, for hexagonal bridge decks (W=0.15 and 0.3) the lift value (CL) increases significantly as 

compared to the pentagonal bridge decks (W=0). This is also should be mentioned that in the last 

section for pentagonal shaped bridge deck, the bottom plate slope was altered by changing the side 

ratio (R) and her in this section for pentagonal bridge deck the bottom plate slope was varied by  
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(a) Mean value of drag force coefficients 

 
(b) Strouhal number 

  

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

  

 
(e) Mean value of moment coefficients 

 
(f) rms value of moment coefficients 

 

Figure 5.21: Influence of width ratio (W) on steady state force coefficients 

 

 

changing the nose location. However, no significant variation was found in the results for these two 

strategies to change the bottom plate slope (ζB) for the pentagonal bridge deck.   

 

          In the last chapter we showed that either pressure distribution or velocity distribution alone 

can explain the trend in the result very well. Fig.5.22 compares the time averaged velocity 

distribution for the selected pentagonal and hexagonal bridge decks. As can be seen hexagonal 

bridge deck has larger bottom surface leading edge separation and smaller trailing edge separation.  
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(a) W=0, ζB=15°, a/D=0.33 

 
(b) W=0.3, ζB=15°, a/D=0.53 

  

 
(c) W=0, ζB=13°, a/D=0.42 

 
(d) W=0.3, ζB=13°, a/D=0.59 

  

 
(e) W=0, ζB=11°, a/D=0.515 

 
(f) W=0.3, ζB=11°, a/D=0.66 

 

Figure 5.22: Influence of bottom plate slope (ζB) on flow field for the pentagonal and hexagonal 

bridge deck 

 

 

 
(a) Bottom surface leading edge separation 

 
(b) Bottom surface trailing edge separation 

 

Figure 5.23: Influence of bottom plate slope (ζB) on leading and trailing edge flow separation 

 

 

From the velocity distribution in the vertical plane we calculated the boundary layer separation 

height at the leading and trailing edge of bridge decks. Fig.5.23 plots the bottom surface leading 

edge and trailing edge separation height for various bottom plate slopes (ζB). Fig.5.23 reflects the 

general observation we made earlier in quantitative manner. The hexagonal bridge deck has larger 

leading edge separation and smaller trailing edge separation. Further, in case of hexagonal deck, the 

trailing edge flow separation stops at larger bottom plate slope (ζB) at around 13° 

 

          Based on this observation, the trend in the steady state force coefficients can be explained. In 

case of hexagonal bridge deck, it has larger bottom surface leading edge separation, in another word, 
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larger downward force. This leading edge separation provides extra downward force than pentagonal 

bridge and increases the negative life value. While the drag and rms value depends on the wake size 

and trailing edge separation. For pentagonal bridge trailing edge separation stops at a bottom plate 

slope (ζB) of 11°, yet for hexagonal bridge deck the separation stops at much larger bottom plate 

slope (ζB=13°). As the trailing edge separation stops, then the wake size is nothing but the side depth 

(a/D). For example, in Fig.5.22(b), for bottom plate slope (ζB) of 15°, still there is trailing edge 

separation. Hence, the total wake size is larger (z+a) and the section possesses larger drag and rms 

value. If the bottom plate slope is decreased to 13° (Fig.5.22(d)), the trailing edge separation stops 

and the total wake size decreases (a/D=0.59), as a result the drag and rms value decreases. However, 

further decrease in bottom plate slope to 11° (Fig.5.22(f)), increases the wake size (a/D=0.66) again 

as the side depth (a) increases.  

 

 

 

5.2.2    Influence of Inspection Rail 
 

 

In practical bridges inspection rails are often attached at the bottom deck surface to install the 

overhead and gantry cranes. The deck shapes we discussed earlier in this and the last chapter, the 

bottom surface of the deck plays an important role for controlling the flow and keeping it attached to 

the deck surface. Presence of handrail will surely disturb the flow and thereafter the responses. 

Further, location of the handrail will also influence the responses. In this section we discuss the 

influence of inspection rail and its location on aerodynamic responses. Simulation was conducted for 

hexagonal bridge deck with a bottom plate (ζB) slope of 11°. The influences of four different 

locations of inspection rails were explored. Fig.5.24 illustrates the locations of inspection rails 

utilized for the investigation.  

 

          Table 1 compares the important aerodynamic responses among various cases of inspection 

rails. As can be seen attachment of the inspection rail increases the drag and reduces the negative lift 

value and the shedding frequency. If we compare among the locations of inspection rail, Case-III 

and IV have lower responses than the other two cases. The most important criteria would be the sign 

of the lift force and the magnitude of the drag force. As the table depicts, Case-III and IV have 

negative lift value while other two cases possess positive lift value. Further, for those two cases the 

drag was also lower than the other cases.   

 

 

 
 

Figure 5.24: Inspection rail and its location 
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          Fig5.25 shows the time averaged flow pattern for all five cases we considered in this section. 

The trend in Fig.5.25 is similar to the trend we found in Table 1. The inspection rail influences the 

bottom deck flow significantly. Due to the presence of the inspection rail, the early flow separation 

occurs at the bottom deck surface. Cases-I and II have the largest separation, as a consequence the 

shear layer velocity decreases, decreasing the negative lift value and Strouhal number (St). This 

separated flow would also affect the wake of the deck and thereafter the responses. To observe the 

wake behavior, velocity distribution at 0.25D downstream of the deck is plotted at Fig.5.26. Here 

also, the case-I and case-II have much larger wake size as compared to the other cases and the Case-

IV has the smallest wake size as compared to the other three cases and very close to the basic section 

(Case-0). Therefore, the inspection rail should be placed at the inclined web plate rather than at the 

bottom horizontal plate (b) from aerodynamic point of view. 

 

 

Table 5.1: Influence of inspection rail and its location on aerodynamic response  

 

Case 

No. 

Mean 

Drag (CD) 

Mean 

Lift (CL) 

Mean 

Moment (CM) 

rms Lift 

(CLʹ) 

rms Moment 

(CMʹ) 

Srouhal No. 

(St) 

0 0.507 -0.531 0.0046 0.0529 0.0106 0.198 

I 0.724 0.011 -1.5721 0.0348 0.0940 0.131 

II 0.649 0.024 -1.6181 0.0502 0.1332 0.129 

III 0.623 -0.205 -0.8020 0.0334 0.1124 0.157 

IV 0.569 -0.272 -0.3455 0.0459 0.1737 0.177 

 

 

 
(a) Case-0 

  

 
(b) Case-I 

 
(c) Case-II 

  

 
(d) Case-III 

 
(e) Case-IV 

 

Figure 5.25: Influence of inspection rails on the flow field around the bridge deck 
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Figure 5.26: Influence of inspection rail on the bridge deck wake size (w)  

 

 

 

5.2.3    Influence of Side Ratio (R) and Median Curb 
 

 

This section demonstrates the influence of side ratio (R) on aerodynamics of the hexagonal bridge 

decks. Using this opportunity we also checked the effects of handrails and median curb. Two sets of 

simulation were conducted. The first on is for side ratio (R) of 8 without handrail and median curb. 

For the second set of simulation, both the handrail and the median curb (WHM) were installed. For 

both of these cases, a width ratio (W) of 0.5 was chosen. The bottom plate slope (ζB) was varied from 

20° to 10°. The Reynolds number (ReB) was set to 9.7x104 for the deck with a side ratio (R) of 8, yet 

the inlet velocity (U) was kept same among all the simulations. 

 

          The steady state force coefficients for the bridge deck with a side ratio (R) of 5 and 8 are 

compared in Fig.5.27. Except the mean value of moment (CM), the other responses show quite 

noticeable sensitivity to the variation side ratio (R) and the presence of the median curb. The mean 

lift (CL) value doesn‟t alter significantly when the side ratio (R) changes, yet the negative lift value 

decreases significantly due to addition of handrail and median curb. However, the mean drag value 

and rms of lift force show sensitivity to the side ratio (R), handrail and median curb. When the side 

ratio (R) increases from 5 to 8, the optimum response shifts to the larger bottom plate slope (ζB=15°). 

With the addition of handrail and median curb, the bottom plate slope (ζB) for optimum response 

decreases again and shifts to a value near about 14°-13°.  

 

          The time averaged flow fields are summarized for a particular bottom plate slope in Fig.5.28. 

By observing the flow it can be confirmed that the presences of the median curb governs the 

responses rather than the handrail. Definitely, the presence of handrail increases the drag. However, 

it doesn‟t disturb the boundary layer flow behavior. On the other hand the median curb directly takes 

part to disturb the boundary layer flow field. When the side ratio (R) is increased from 5 to 8, the 

bottom horizontal plate (b) becomes longer. Hence, the separation tendency of the flow decreases 

and the trailing edge separation stops at a larger bottom plate slope (ζB). That‟s how the optimum 

location of bottom plate slope (ζB) increase for large side ratio (R). When the median curb is attached 

to the top deck, it makes the flow slower and the trailing edge flow separation appears again for the 

same bottom plate slope (Fig.5.29). Therefore, smaller bottom plate (ζB) is required for stopping the 

trailing edge flow separation and the optimum location shifts.  
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(a) Mean value of drag force coefficients 

 
(b) Mean value of moment coefficients 

  

 
(c) Mean value of lift force coefficients 

 
(d) rms value of lift force coefficients 

 

Figure 5.27: Influence of side ratio (R) and median curb on steady state force coefficients 

 

 

 
(a) R=5, W=0.3, ζB=15° 

 

 
(b) R=8, W=0.5, ζB=15° 

 

 
(c) R=8, W=0.5, ζB=15° (With median curb) 

 

Figure 5.28: Influence of side rato (R) and median curb on flow field around the bridg deck 
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Figure 5.29: Influence of side ratio (R) and median curb on the trailing edge boundary layer flow 

separation  

 

 

 

5.3    Concluding Remarks 
 

 

This chapter provided an overview of the influences of various shaping parameters such as bottom 

plate slope (ζB), curb angle (β), curb height (h/D), width ratio (W) and side ratio (R) etc. on the 

aerodynamics of the bridge deck without fairing. In addition, effects of Reynolds number (ReB) were 

also explored. As a basic conclusion, pentagonal bridge deck exhibits better aerodynamic 

performance than the hexagonal bridge. Hexagonal bridge deck requires much larger bottom plate 

slope (ζB) to reach the optimum steady state responses. Depending on the location of inspection rail 

and presence of the median curb the aerodynamic behavior alters quite noticeably.  Further, 

Reynolds number (ReB) effects on bridge deck without fairing are also found to be similar to the 

bridge deck with fairing.   

 

          Similar to the bridge deck with fairing, bridge deck without fairing also owns some important 

flow feature such as the top surface leading edge flow separation, bottom surface leading and trailing 

edge flow separation etc. Their roles on controlling steady state responses are also similar to the 

bridge deck with fairing. However, unlike bridge deck with fairing, in case bridge deck without 

fairing the negative lift force was controlled by the leading edge flow separation.  

 

          We found that Separation Interference Method (SIM) improves the aerodynamic performance 

of bridge decks by shortening the top surface leading edge flow separation and better performance 

can be obtained by placing the curb angle (β) and height (h/D) at 27° and .01, respectively. Similar 

to past experimental of work of Kubo et al. (2007), we also found that small bottom plate slope 

(ζB=11°) possess minimum aerodynamic responses. A smaller bottom plate slope (ζB) the trailing 

edge separation stops and improves the aerodynamic behavior. With the increases of Reynolds 

number (ReB) the trailing edge separation stops at a larger bottom plate slope (ζB) and value of 

optimum bottom plate slope (ζB) increases. That‟s how the minimum drag value was obtained at a 

bottom plate slope (ζB) of 12° in past experimental work (Kubo et al. 2007).  

 

          Aerodynamic responses increases and becomes less sensitive to the bottom plate slope (ζB) 

when the deck shape is altered from pentagon to hexagonal shape. Further, depending on the width 

(W) and side ratio (R), larger bottom plate slope (ζB) is required to obtain the optimum aerodynamic 
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responses. At larger width (W) and side ratio (R), the width of the bottom horizontal plate (b) 

increases. Therefore, the flow remains attached to the trailing edge even at large bottom plate slope 

(ζB) at around 15°. However, when the median curb is attached to the section, the flow becomes 

slower; requiring smaller bottom plate slope (ζB=14°-13°) to stop the trailing edge separation.  

 

          Installation of inspection rail and median curb affects the flow field significantly. Based on 

our investigation it came out that inspection rail should be placed at the inclined bottom plate rather 

that the bottom horizontal plate (b) to reduce the trailing edge separation. On the other hand, median 

curb should be placed at the mid-width of the bridge deck. In case the median curb is placed near the 

edge curb, it may jeopardize the effectiveness of SIM.  

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 6 

 

Bridge Deck Shaping Effects on 

Dynamic Response 

 

 
 

The aerodynamic response of long-span cable-supported bridge decks can be broadly divided into 

steady state and dynamic responses. Steady state response mainly indicates the deformation of the 

deck due to static wind actions such as drag, lift and moment. On the other hand, dynamic responses 

are associated with the vibration of the bridge deck due to dynamic wind actions such as vortex 

induced vibration and flutter instability. From wind resistant design point of view both of these 

responses are important and treated carefully during the design procedure.  

 

          In the last two chapters we explored the influence of various shaping parameters on steady 

state responses of the bridge deck with and without fairing. Based on our investigation we found a 

number of important trends in the results due to variation of shaping parameters and some important 

flow features those controls the static responses. However, those findings were based on steady state 

responses only. It is equally important to examine the influence of shaping parameters on dynamic 

responses too.  

 

          We choose some particular sections having distinct steady state response and checked their 

dynamic response characteristics. In addition, the trend and aerodynamic response we found can be 

explained by means of some common flow features such as the leading edge top and bottom surface 
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flow separation and the trailing edge flow separation. It is also demanding to explore the implication 

of those flow features on dynamic responses.  

 

          This chapter focuses on the shaping effects on dynamic response of the bridge decks. Flutter 

derivatives of some particular shapes were calculated to evaluate their flutter characteristics both for 

the deck with and without fairing. Unsteady pressure characteristics were explored to predict the role 

of various important flow features on aerodynamic damping characteristics. Forced-vibration 

simulations were conducted with low amplitude not to hamper the characteristics of the flow 

features. A heaving amplitude (εo/B) of 0.006 and torsional amplitude (αo) of 1° were utilized to 

conduct the forced vibration simulation. 

 

          The chapter is broadly divided into two parts. The first part deals with the bridge deck with 

fairing and second part addresses the bridge deck without fairing. All the simulations were 

conducted at a Reynolds number (ReB) of 5.0x104 for basic section only without any handrail. 

Aerodynamic analyses were carried out by employing the procedure presented in chapter 2. 

Methodology discussed in chapter 3 (Secs. 3.7 and 3.10.2) was used to setup model for the dynamic 

simulation.  

 

 

 

6.1    Behavior of Bridge Deck with Fairing 
 

 

The behavior and influence of bottom plate slope (ζB) on aerodynamic response showed different 

trend depending on the width ratio (W) for bridge deck with fairing. Therefore, we selected the width 

ratio (W) of 1 and 0.5 to observe the influence of bottom plate slope (ζB) on dynamic response. Both 

the torsional and heaving mode flutter derivatives were calculated. Torsional flutter derivatives were 

extracted by conducting forced vibration simulation in torsional mode, yet the heaving mode flutter 

derivatives were obtained by employing the interdependency relationships among flutter derivatives. 

The relationships were discussed in Chapter 2 (Sec.2.3.2.2) and validated later in chapter 3 

(Sec.3.10.2.1). Simulations were conducted at a Reynolds number (ReB) of 5.0x104. The reduced 

velocity (U/fB1) was altered from 5 to 20 at an interval of 5 by changing the frequency (f) of 

vibration. The deck section had a side ratio (R) of 5 and simulation was conducted for basic section 

only without any handrail. The grid had an average y+ value of around 2 with a maximum y+ value 

of near about 6.50.  

 

 

 

6.1.1    Bridge Deck with Edge Fairing (W=1) 
 

 

In case of the bride deck with edge fairing we found a trend in the result that, for a range of bottom 

plate slope (ζB) of 25°-20°, the aerodynamic responses were optimum and experienced the least flow 

separation. The aerodynamic response increased significantly for the bottom plate slope (ζB) smaller 

than 15°. We selected two deck sections from these two distinct zones: i) ζB=25° and ii) ζB=12° to 

observe their dynamic response. Fig.6.1 compares the considered bridge deck sections.  

 

          Fig.6.2 summarizes the torsional flutter derivatives for these two deck shapes. The variation of 

the bottom plate slope (ζB) affects all the torsional flutter derivatives except the A3
*. From torsional  
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(a) Bottom plate slope (ζB) of 25° 

 
(b) Bottom plate slope (ζB) of 12° 

 

Figure 6.1: Comparision of the considered bridge deck for the edge fairing (W=1) 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.2: Influence of bottom plate slope (ζB) on torsional mode flutter derivatives for the width 

ratio (W) of 1 

 

 

flutter point of view the A2
* would be the most important derivative and from coupled flutter point of 

view H3
*. From torsional flutter point of view, the deck with a bottom plate slope (ζB) of 25° has 

better behavior as it possess larger negative value of A2
* as compared to the 12° case. On the other 

hand, from coupled flutter point view 12° case has a bit better stiffness than the 25° case as it has 

smaller value of H3
*. However, at low reduced velocity (u/fB1 of 5), the deck with a bottom plate 

slope (ζB) of 12° has higher possibility of torsional vibration than for 25° case. By exploiting the 

interdependency relationship among flutter derivatives, the heaving mode flutter derivatives were 

derived and plotted in Fig.6.3. In case of heaving mode, the A1
* and H1

* are the two most important 

flutter derivatives. The bridge deck with a bottom plate slope (ζB) of 25° has larger aerodynamic 

damping over 12° case in heaving mode too. Even so, the variation of bottom plate slope (ζB) 

doesn‟t affect the A1
*.   
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          We found that both in torsional and heaving mode, the bridge deck with a bottom plate slope 

(ζB) of 25° have a bit larger aerodynamic damping than 12° case. To obtain a better idea about the 

distribution of damping forces around the bridge deck, the unsteady pressure characteristics were 

explored as discussed in chapter 2. In addition this would also give us some information about the 

role of various important flow features that took place for this kind of bridge decks. 

 

          To recall the position and extent of various important flow features for these deck shapes, the 

time averaged velocity fields are compared in Fig.6.4. Differences in the flow field can be noticed 

conspicuously at the bottom surface leading and trailing edge side. By comparing the unsteady 

pressure characteristics for these two shapes, the role of those flow features can be understood in 

some extent. 

 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.3: Influence of bottom plate slope (ζB) on heaving mode flutter derivatives for the width 

ratio (W) of 1 determined from the interrelationship among the flutter derivatives 
 

 

 
(a) ζB=25° (W=1) 

 
(b) ζB=12° (W=1) 

 

Figure 6.4: Comparison of time averaged velocity field for large and small bottom plat slopes (ζB) of 

the bridge deck with the width ratio (W) of 1 
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          Fig.6.5 compares the work done by the unsteady pressure in torsional mode for these two 

decks at reduced velocity (U/fB1) of 5 and 15. In general, the damping lies on the top and bottom 

surface of the leading edge corner of bridge deck, while the excitation lies on the leading and trailing 

edge side fairing surface. The variation of bottom plate slope (ζB) mainly affects the bottom surface 

leading and trailing edge side rather than top surface. At low reduced velocity (U/fB1=5), the bottom 

surface leading edge corner separation acts as an excitation force. For bottom plate slope (ζB) of 12°, 

it has wider separation area at the leading edge corner as compared to 25° case and similar trend can 

be found in Fig.6.5(c). However, the top surface leading edge separation provides damping to the 

system. Both the at the top and bottom surface, the trailing edge separation is mostly excitation 

force. The deck with a bottom plate slope of 25° has smaller excitation than 12° case. At high 

reduced (U/fB1=15), the pressure characteristics remains same, yet the magnitude of damping and 

excitation force decreases. 

 

          To obtain the idea about the unsteady pressure characteristics in heaving mode, forced 

vibration simulations were conducted at reduced velocity (U/fB1) of 5. The work done by the 

unsteady pressure is plotted in Fig.6.6. As can be seen, the characteristics of work done in heaving 

mode are almost similar to that of the torsional mode. Here also the deck with a bottom plate slope 

(ζB) of 25° has smaller excitation at the trailing edge fairing than the 12° case, improving the 

aerodynamic damping characteristics of the bridge deck.    

 

 

 
(a) Top surface (U/fB1=5) 

 
(b) Top surface (U/fB1=15) 

  

 
(c) Bottom surface (U/fB1=5) 

 
(d) Bottom surface (U/fB1=15) 

 

Figure 6.5: Influence of bottom plate slope (ζB) on work done by the unsteady pressure in torsional 

mode for the width ratio (W) of 1 
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6.1.2    Streamlined Bridge Deck (W=0.5) 
 

 

The streamlined bridge deck showed opposite trend in the result due to variation of bottom plate 

slope (ζB) in relation to the deck with edge fairing. In case of streamlined bridge deck, the bridge 

deck with small bottom plate slope (ζB≤15 ) had a better aerodynamic responses as compared to the 

large bottom plate slope (ζB=20°~25°). Therefore, similar to the edge fairing case, for streamlined 

deck also we selected the bridge deck with same bottom plate slopes (ζB) of 25° and 12° as shown in 

Fig.6.7. 

 

          Fig.6.8 depicts the torsional mode flutter derivatives for bottom plate slopes (ζB) of 25° and 

12°. As can be seen in case of streamlined case, flutter derivatives are more sensitive to the variation 

of bottom plate slope (ζB) as compared to the edge fairing case (in Fig.6.2). The bottom plate slope 

(ζB) of 12° has larger negative value of A2
* than the 25° case indicating better torsional flutter 

stability. At low reduced velocity (U/fB1=5) the variation is quite small and increases gradually as 

the reduced velocity (U/fB1) increases.  

 

          For long-span bridge deck coupled flutter is another important aspect. The bottom plate slope 

(ζB) of 12° has also better responses from coupled flutter standpoint as it possess smaller value of 

H3
*. In terms of A3

*, it shows reverse behavior, however, the variation in magnitude of A3
* due to 

change in bottom plate slope (ζB) is quite small as compared to the H3
*. The heaving mode flutter 

derivatives were calculated from the interdependency relationships are plotted in Fig.6.9. In case of  

 

 

 
(a) Top surface (U/fB1=5) 

 
(b) Top surface (U/fB1=5) 

 

Figure 6.6: Influence of bottom plate slope (ζB) on work done by the unsteady pressure in heaving 

mode for the width ratio (W) of 1 

 

 

 
(a) Bottom plate slope (ζB) of 25° 

 
(b) Bottom plate slope (ζB) of 12° 

 

Figure 6.7: Considered bridge deck with distinct aerodynamic responses for the streamlined bridge 

deck 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.8: Influence of bottom plate slope (ζB) on torsional mode flutter derivatives for the width 

ratio (W) of 0.5 

 

 

heaving mode, the bottom plate slope (ζB) of 12° has a bit smaller value of H1
* than 25° and other 

flutter derivatives doesn‟t show any definite trend. However, the value of H1
* remains negative in 

both of these cases. Therefore, result obtained based on A2
* and H3

* should be given priority.  

 

          Fig.6.10 compares the time averaged velocity distribution around the considered bridge decks 

to retrieve the flow fields. The bridge deck with bottom plate slope (ζB) of 12° has smaller trailing 

edge separation and nose down situation as compared to the 25° case. Fig.6.11 shows the work done 

by the unsteady pressure characteristics in torsional mode. The characteristics of work by the 

unsteady pressure for streamlined (W=0.5) case are similar to the bridge deck with edge fairing as 

shown in Fig.6.5. However, the magnitude of the excitation force increases in the present case. 

Similar to edge fairing, here also the trailing edge separation is excitation force and the top surface 

corner provides damping force to the system. If a relative comparison is made between Fig.6.10 

and6.11, then it can be deduced that a deck with a larger separation (ζB=25°) has completely 

excitation at the trailing edge side. However, the deck with a smaller bottom plate slope (ζB) has 

mostly damping at the trailing edge side. In addition, in chapter 4 we also showed that a deck with a 

bottom plate slope (ζB) of 25° had larger rms fluctuation, this also coincides with Fig.6.11. At higher 

reduced velocity the magnitude of damping and excitation force decreases. Moreover, in case of 

bottom plate slope (ζB) of 12°, the leading edge bottom surface separation becomes damping 

completely at high reduced velocity (U/fB1=15).     
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.9: Influence of bottom plate slope (ζB) on heaving mode flutter derivatives for the width 

ratio (W) of 0.5 determined based on the interrelationship among the flutter derivatives 

 

 

 
(a) ζB=25° (W=0.5) 

 
(b) ζB=12° (W=0.5) 

 

Figure 6.10: Comparison of time averaged velocity field for large and small bottom plate slopes (ζB) 

of the bridge deck with a width ratio (W) of 0.5 

 

 

          Additional simulation was conducted at a reduced velocity (U/fB1) of 5 to obtain an idea about 

the distribution of work done by the unsteady pressure in heaving mode. Fig.6.12 shows the work 

done by the unsteady pressure in heaving mode. A like edge fairing case (W=1), the general trend in 

the distribution is similar to the torsional mode. The excitation force exists at the leading and trailing 

edge side fairing surface and a bottom plate slope (ζB) of 25° has larger excitation force as compared 

to the 12° case.  
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(a) Top surface (U/fB1=5) 

 
(a) Top surface (U/fB1=15) 

 
(a) Top surface (U/fB1=5) 

 
(b) Bottom surface (U/fB1=15) 

 

Figure 6.11: Influence of bottom plate slope (ζB) on work done by the unsteady pressure in torsional 

mode for width ratio (W) of 0.5 

 

 

          In the last and this sections, we have shown the influence of bottom plate slope (ζB) on 

dynamic response for a fixed width ratio (W). However, comparison can also be made among the 

decks having different width ratio (W) for a fixed bottom plate slope (ζB). By comparing Figs.6.2 

and 6.8 for torsional mode and Figs.6.3 and 6.9 for heaving mode, the influence of width ratio (W) 

on dynamic response can be understood. As can be seen the variation of width ratio (W) primarily 

affects the A3
* and H3

*. As the width ratio (W) decreases, the nose goes upward and improves the 

coupled flutter behavior of the bridge deck. 

 

 

 

6.2    Behavior of Bridge Deck without Fairing 
 

 

For bridge deck without fairing, we choose two important aspects: i) The influence of Separation 

Interference Method (SIM) and ii) The influence of the bottom plate slope (ζB). Simulations were 

conducted in torsional mode only, as torsional mode instability was the main concern for this type of 

pentagonal shaped bridge (Kubo et al. 2007). Simulations were conducted at a Reynolds number 

(ReB) of 5.0x104. The reduced velocity (U/fB1) was altered from 5 to 20 at an interval of 5 by 

changing the frequency (f) of vibration. The curb angle (β) and height (h/D) was set to 30° and 0.115 

respectively. The grid had an average y+ value of around 2.15 with a maximum y+ value near about 

8.25.  
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(a) Top surface (U/fB1=5) 

 
(b) Bottom surface (U/fB1=5) 

 

Figure 6.12: Influence of bottom plate slope (ζB) on work done by the unsteady pressure in heaving 

mode for width ratio (W) of 0.5 

 

 

 

6.2.1    Influence of Separation Interference Method (SIM) 
 

 

In chapter 5, we showed that addition of curb at an optimum angle (β) and height (h/D) reduces the 

steady state responses significantly. Specially, the top surface leading edge separation decreased 

when the curb was placed at the leading edge side. To evaluate the effectiveness and influence of 

SIM on dynamic response, flutter derivatives were calculated. A bridge deck with a side ratio (R) of 

5 and a bottom plate slope (ζB) of 12° was considered. Fig.6.13 depicts schematic view of the deck 

sections. Forced-vibration simulation was conducted for the bridge deck with and without curb.  

 

          Fig.6.14 illustrates the influence of SIM on torsional flutter derivatives. Except the A2
* and 

H3
*, the other two flutter derivatives rarely alters due to addition of curb to the bridge deck. In case 

of with curb situation, the coupled derivatives H3
* has smaller value indicating better stability than 

the without curb case. However, the most important criteria would be the sign and magnitude of A2
* 

and is the most sensitive flutter derivatives found to be in Fig.6.14. As can be seen when there is no 

curb attached to the bridge deck, it shows almost positive value for the complete range of reduced 

velocity. However, the magnitude of A2
* becomes negative and increases significantly when the curb 

is attached to the section. This implies that the SIM improves both the vortex shedding and torsional 

flutter stability of the bridge decks without fairing under wind actions. 

 

 

 
(a) Deck without curb 

 
(b) Deck with curb 

 

Figure 6.13: Considered bride deck to show the influence of SIM on flutter derivatives 
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          The time averaged flow fields are plotted in Fig.6.15. The difference in the flow separation at 

the leading edge top surface is clear. For these two bridge decks the top surface unsteady pressure 

characteristics are summarized in Fig.6.16. At the leading edge side mainly excitation can be 

observed. When the curb is attached to the section, the excitation force increases a bit at the leading 

edge corner, yet drops significantly just after curb location. The effectiveness of SIM can be better 

noticed at higher reduced velocity (U/fB1=15) in Fig.6.16(b). At the leading edge side, the separated 

flow works as an excitation force for the without curb case and that become damping force when the 

curb is attached to the section.  

 

 

 
(a) 

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.14: Influence of SIM on torsional flutter derivatives 

 

 

(a) Without curb 
 

(b) With curb 

 

Figure 6.15: Influence of SIM on the flow field (ζB=12° and R=5) 
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(a) At low reduced velocity (U/fB1=5) 

 
(b) At high reduced velocity (U/fB1=15) 

 

Figure 6.16: Influence of SIM on unsteady pressure characteristics of the deck top surface 

 

 

 

6.2.2    Influence of Bottom Plate Slope (θB) 
 

 

For pentagonal bridge deck, smaller bottom plate slope (ζB=12°) possessed better steady state 

responses as compared to the large bottom plate slope (ζB=15°). Fig.6.17 compares the considered 

bridge sections. Flutter derivatives for the bride deck with a bottom plate slope (ζB) of 15° were 

calculated and compared with the bottom plate slope (ζB) of 12° evaluated previously in Fig.6.18. No 

significant influence of bottom plate slope (ζB) on the flutter derivatives was found. Based on H3
*, a 

bottom plate slope (ζB) of 15° has slightly better stability than the 12° case. In the meantime, a 

bottom plate slope (ζB) of 12° has slightly higher damping (A2
*) than the 15° case. However, A2

* is 

considered as a more reliable and efficient coefficient to predict the torsional instability of structures 

(Matsumoto 1996, Matsumoto et al. 1999 and Matsumoto et al. 2008a) than the other coefficients. 

Therefore, we should prioritize the trend shown by A2
* i.e., the deck with a bottom plate slope (ζB) of 

12° has better torsional flutter stability than the 15° case. 

 

          Fig.6.19 compares the time averaged velocity distribution for these two bridge decks. The 

differences can be primarily observed at the bottom surface leading and trailing edge sides. A 

relative comparison between the unsteady pressure distributions would explain the role of those flow 

features on dynamic response. Fig.6.20 depicts the work done by the unsteady pressure for these two 

bridge decks. The variation of the bottom plate slope (ζB) mainly affects the bottom surface pressure 

characteristic. A slight variation of the top surface pressure characteristic can be found at the trailing 

edge side where the flow reattachment occurs. Similar to last section, here also we find that this kind 

of top surface reattachment flow acts as a damping force at low reduced velocity (U/fB1=5) and 

becomes excitation force at higher reduced velocity (U/fB1=15).    

 

 

 
(a) Bottom pate slope (ζB) of 12° 

 
(b) Bottom plate slope (ζB) of 15° 

 

Figure 6.17: Considered bridge deck to show the influence of bottom plate slope on torsion flutter 
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          On the other hand, the bottom surface leading edge separation is damping at low reduced 

velocity (U/fB1=5) and remains as a damping at high reduced velocity (U/fB1=15). The trailing edge 

flow separation shows different trend. At low reduced velocity (U/fB1=5), this works as a damping 

force and at high reduced velocity (U/fB1=15) this becomes excitation. Further, section with a larger 

separation (ζB=15°) possesses a bit larger damping and excitation at low and high reduced velocity, 

respectively, as compared to the section with smaller flow separation (ζB=12°). Therefore, this type 

of trailing edge flow separation decreases the torsional flutter stability at high reduced velocity. They 

will play an important role for initiating the flutter instability. This provides an explanation why in 

experimental work (Kubo et al. 2007) higher flutter wind speed was obtained at a smaller bottom 

plate slope (ζB≤13 ). Further, this also justifies the conjecture we made in chapter 5 that, a deck with 

small trailing edge separation may have higher flutter wind speed.    

 

 

 
(a)  

 
(b) 

  

 
(c) 

 
(d) 

 

Figure 6.18: Influence of bottom plate slope (ζB) on torsional flutter derivatives 

 

 

 
(a) ζB=15°, R=5 

 
(b) ζB=12°, R=5 

 

Figure 6.19: Influence of bottom plate slope (ζB) on time averaged velocity field 
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(a) Top surface (U/fB1=5) 

 
(b) Top surface (U/fB1=15) 

  

 
(c) Bottom surface (U/fB1=5) 

 
(d) Bottom surface (U/fB1=15) 

 

Figure 6.20: Influence of bottom plate slope (ζB) on unsteady pressure characteristics 

 

 

 

6.3    Concluding Remarks 
 

 

The main objective of this chapter was to explore the influence of important shaping parameters on 

dynamic response of the bridge decks. Based on our previous observation in chapter 4 and 5, some 

specific deck shapes were chosen to check their aeroelastic characteristics by means of flutter 

derivatives. Along with this, the implication of various flow features on aeroelastic instability were 

also tried to reveal through unsteady pressure characteristics.  

 

          Both in the case of bridge deck with and without fairing, the variation of shaping parameters 

mainly affected the A2
*, H3

* and H1
* derivatives. It was found that the trend we found in the dynamic 

response also has similar trends in result that we obtained in steady state response for bridge deck 

with fairing. For the bridge deck with edge fairing (W=1), comparatively large bottom plate slope 

(ζB=25°) had better dynamic responses as compared to the small bottom plate slope (ζB=12°). For 

deck with large bottom plate slope (ζB=25°) had larger damping both in the torsional and heaving 

mode. In case of streamlined bridge deck, reverse behavior was found. The deck with a small bottom 

pate slope (ζB=12°) exhibited better stability from torsional and coupled flutter point of view with 

respect to the deck with a large bottom plate slope (ζB).    

 

          For bridge deck with fairing, the damping force mainly exists at the leading edge top and 

bottom surface corner just after the fairing, while the excitation force exists at the leading and 

trailing edge fairing surface. However, if the fairing has sufficient length with less separation at the 
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trailing edge side, damping exists at the end of the fairing. In contrary to this, small fairing length 

with large flow separation at the trailing edge, experiences large excitation force.  

 

          The Separation Interference Method (SIM) method is found to be effective for dynamic 

response as well. The placement of curb at optimum angle (β) and height (h/D), improves the 

torsional damping characteristics of the system significantly. The trend we found in steady state 

response also holds for dynamic response. A pentagonal bridge with small bottom plate slope 

(ζB=12°) possess a little bit larger damping due to smaller trailing edge flow separation as compared 

to the large bottom plate slope (ζB=15°). 

 

          In case of deck without fairing, the leading edge top and bottom surface separation works as a 

excitation force at low reduced velocity (U/fB1=5) and becomes damping at high reduced velocity 

(U/fB1=15). In contrary to leading edge, the bottom surface trailing edge separation is mainly 

damping force at low reduced velocity (U/fB1=5) and acts as a excitation force at high reduced wind 

velocity (U/fB1=15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 7 

 

Conclusions  

 
 

The aim of the present study was to explore and reveal the influence of various shaping parameters 

on aerodynamics of long-span cable-supported bridge decks. To pursue that, detailed numerical 

investigation was carried out for the bridge deck with and without fairing. Various important shaping 

parameters such as Top plate slope (ζT), bottom plate slope (ζB), width ratio (W), and side ratio (R) 

were taken into consideration and their influences on static and dynamic responses were 

investigated. Flow fields were analyzed for explaining the trends in the results and knowing the 

significance of various common flow features on aerodynamic responses.  

 

          In the last few chapters, several individual observations were made and separate conclusions 

were drawn at the end of each chapter. In this chapter we have synthesized all those individual 

conclusions for easier understanding the findings of the present study. The chapter consists of two 

sections. The first section presents the main findings of the presents study. We divided the findings 

broadly into two categories. In the first part, we listed the findings corresponding to the objective 

related to the flow mechanisms of the aerodynamic responses. The second part of the section sum up 

the findings related to the shaping parameters for the practical application. The last section 

highlights the limitations of the present study and provides direction for future research.    

 

 

 

7.1 Main Findings of the Study  
 

Related to the flow mechanism 

 

          In case of bride deck with fairing, the negative lift value is generated by the fast moving 
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boundary layer flow at the bottom deck surface. Exclusively for edge fairing (W=1), the leading edge 

bottom surface separation governs over the boundary layer velocity to increase the negative lift 

value. On the other hand, in case of bridge deck without fairing, the leading edge top and bottom 

surface separations are the main cause of negative lift value. When, there is no variation in the top 

surface flow separation, the bottom surface leading edge flow separation along controls the lift force.  

 

          Both for the case of bridge deck with and without fairing, the drag reduction is mainly caused 

by the stop in bottom surface trailing edge flow separation and the nose location. When the trailing 

edge flow separation stops, the deck with higher nose location (y/D) will experiences the lesser drag 

force. However, to obtain optimum drag response, the trailing edge separation should be stopped 

completely at the boundary layer.  

 

          Similar to the drag force, the after-body vortex shedding tendency also depends on the trailing 

edge flow separation and the nose location (y/D) for both of these decks. When the trailing edge flow 

separation stops, the vortex forms on the trailing edge top fairing (with fairing) or at the side of the 

bridge decks (without fairing). Therefore, when there is no flow separation, the deck with higher 

nose location will possess smaller wake. As a result, size of the vortex decreases and reduces the 

susceptibility to vortex induced vibration. Further, when the nose (y/D) is placed on the upper half 

(y/D≥0.5) of the bridge deck, the strength and tendency of after-body vortex diminishes 

significantly.  

 

          In general, for bridge deck with fairing (0.3≤W, R≥5), the trailing edge flow separation almost 

stops at a bottom plate slope (ζB) of 15° or any value smaller than that, while for the bridge deck 

without fairing (0≤W≤0.3, R=5) comparatively smaller bottom plate slope (ζB) of around 12° is 

required. Basically, in case of bridge deck with fairing, there is sufficient width of horizontal bottom 

plate (b) to travel the flow horizontally before traveling at the trailing edge plate; as a result, the flow 

remains attach to the trailing edge inclined bottom plate at a larger bottom plate slope (ζB) of around 

15°. On the other hand, for bridge deck without fairing (0≤W≤0.3, R=5), the flow travel on the 

leading edge inclined bottom plate, gains large inertial force towards downward before traveling at 

the trailing edge inclined plate. Therefore, much smaller bottom plate slope (ζB≈12  for W=0) is 

required to maintain the flow attached to the trailing edge inclined bottom plate. As long as the width 

and side ratio increases (W≥0.5, R≥8) of the bridge deck without fairing, the flow separation stops at 

larger bottom plate slope (ζB≈15 ) similar to the bridge deck with fairing.    

 

          The Reynolds number effects are found to be similar both for bridge deck with and without 

fairing. The increase in Reynolds number (ReB) increases the bottom surface leading edge flow 

separation, yet decreases the top surface leading edge and bottom surface trailing edge flow 

separation. Therefore, at high Reynolds number (ReB≥20x10
4), the trailing edge flow separation stops 

at a larger bottom plate slope (ζB) as compared to the low Reynolds number (ReB≤6x10
4).  

 

          Similar to the Reynolds number (ReB) effect, in case of bridge deck without fairing, when a 

curb of optimum angle (β) and height (h/D) is attached, the boundary layer flow moves faster and the 

top surface leading edge and bottom surface trailing edge flow separation decreases. However, if the 

top surface flow is obstructed by placing a curb with an angle or height other than optimum value or 

median curb is installed, the boundary layer flow becomes slower at the bottom surface of the deck. 

As a result, the trailing edge separation increases requiring smaller bottom plate slope (ζB) to stop 

the trailing edge flow separation.  

 

          In case of bridge deck with fairing, the variation of bottom plate slope (ζB) affects the damping 

characteristics. The damping force mainly exists at the leading edge top and bottom surface corner of  
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the deck. The deck with less separation experiences less excitation and the excitation exists at the 

leading and trailing edge side inclined surface of the fairing. The variation of width ratio (W) mainly 

affects the coupled flutter behavior. In general, as the width ratio (W) decreases, the nose goes 

upward and improves the coupled flutter behavior. We also found that the deck having a mid-height 

nose location has a better stability against coupled flutter as compared to the too much nose up 

situation.  

 

          For bridge deck without fairing, the leading edge top and bottom surface separations work as a 

excitation at low reduced velocity (U/f/B1=5) and becomes damping at high reduced velocity 

(U/fB1=15). In contrast to the leading edge separation, the trailing edge separation is damping at low 

reduced velocity (U/f/B1=5) and acts as an excitation force inputting energy to the system at high 

reduced velocity (U/fB1=15). Therefore, from torsional flutter point of view, trailing edge flow 

separation should be given priority as compared to the leading edge flow separation.  

 

 

 

Related to the Shaping Parameters  

 

          The value of optimum bottom plate slope (ζB) depends on the type of bridge deck (with or 

without fairing) and width ratio (W). In case of bridge deck with fairing, a bottom plate slope of 20°-

25° shows better aerodynamic responses for a width ratio (W) of 1. For small width ratio 

(0.3≤W≤0.7), the value of optimum bottom plate slope (ζB) varies from 12°-15° depending on the 

width ratio (W) and Reynolds number (ReB). However, in general, a bottom plate slope (ζB) of 14° 

possesses better aerodynamic performances for any value of width ratio (W) smaller than 0.7 and 

should perform well at high Reynolds number (ReB).  

 

          In case of bridge deck without fairing, a bottom plate slope (ζB) of 12° owns better 

aerodynamic responses for pentagonal bridge deck. When the deck is shaped hexagonally, the 

optimum location varies between 15°-13° depending on the width ratio (W), side ratio (R), and 

placement of median curb. Therefore, in general, a bottom plate slope (ζB) of 12° can be used for 

hexagonal bridge deck without fairing too. For this general recommendation, the hexagonal bridge 

deck will possess a bit larger wake and leading edge separation as compared to the optimum bottom 

plate slope (ζB).  

 

          For large width ratio (W=1), a top plate slope (ζT) of 40° can be used to obtain better 

aerodynamic performance for smaller (ζT=30°) top plate slope, the size of the fairing increases 

significantly. For small width ratio (W≤0.7), larger top plate slope (ζT>40°) can be used to reduce the 

size of the fairing as no significant advantage can be obtained from aerodynamics point of view by 

using small top plate slope (ζT).   

 

          In general, a small value of width ratio (W) provides better aerodynamic responses for smaller 

bottom plate slope (to ensure stop in trailing edge flow separation). As the width ratio (W) decreases, 

the length of the inclined bottom plate increases and the nose location (y/D) goes up, decreasing the 

after-body wake size. Therefore, for small width ratio (W) bridge deck when smaller bottom plate 

slopes are adopted, we recommend to place the nose on the upper half (y/D≥0.5) of the bridge deck. 

However, too much nose up (y/D≈0.75) or nose down (y/D≈0.25) situation deteriorates the 

aerodynamic performance of the section. 

 

          The range of Reynolds number (ReB≤20x10
4) we explored, based on that we can say, 

aerodynamic analysis should be carried out at least at a Reynolds number (Re) of around 2.5x104 to  
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obtain stable results in the subcritical range of Reynolds number (ReB). At high Reynolds number 

(ReB) the drag decreases and the negative lift value increases.  

 

          The effectiveness of Separation Interference Method (SIM) can be improved by attaching the 

curb at an optimum angle (β) and height (h/D) of 27° and 0.1, respectively. The median curb should 

be tried to place at the center of the bridge deck; otherwise it may deteriorate the performance of the 

SIM. A better location for installing the inspection rail would be at the inclined bottom plate of the 

bridge deck to reduce the trailing edge separation and after-body wake size.  

 

 

 

7.2    Areas of Future Research 
 

 

In the present study, unsteady RANS simulation was employed for investigating shaping effects on 

aerodynamic responses and flow fields of the bridge decks. However, due to inherent limitation of 

unsteady RANS simulation, it could not reproduce the Impinging Leading-Edge Vortices (ILEV) 

(Naudascher & Rockwell 1994). For sharped edged-bluff bodies ILEV significantly influences the 

base suction (Tan et al. 2004), shedding frequency (Mills et al. 2003) and torsional flutter stability 

(Matsumoto et al. 1996 and Kubo et al. 1992).  

 

          The ILEV are primarily generated from the leading edge separation area. However, our 

considered deck shapes possess significantly small leading edge separation. Specially, the bridge 

deck with fairing owns very thin leading edge flow separation. The significance of IELV for these 

type deck is lesser than the sharped edge bluff bodies (Shiraishi and Matsumoto 1983) as the 

separation thickness is too small (Tylor et al. 2012 and present investigation). Even though, Tylor et 

al. (2012) found trace of small bubbles generate from those separated areas. Therefore, it would be 

interesting to explore the influences of those small ILEVs on aerodynamic responses. Based on our 

investigation some particular sections with distinct flow behavior can be chosen and detailed 

numerical investigation can be carried out by employing improved numerical method such as Large 

Eddy Simulation (LES) or Direct Numerical Simulation (DNS) to explore the effects of IELV on 

static and dynamic responses.  

 

          Further, in the present study we conducted two-dimensional simulation to research on 

aerodynamics of the bridge decks due to variation of cross-sectional geometry under smooth flow 

only. However, the natural wind is turbulent and the flow around bridge deck is three dimensional in 

nature. The unsteady nature of the bridge deck in the span-wise direction will alter depending on the 

three dimensionality of the flow and the nature of incoming turbulence. Therefore, from practical 

point of view the present simulations provided conservative results in relation to the actual one. 

Moreover, in this work we clarified Reynolds number effects up to a nominal range to show the 

trend in the results. For practical bridges this value may reach up to Re≈107 (Schewe and Larsen 

1998). Therefore, numerical investigation for exploring the three-dimensional response and flow 

field of the bridge deck due to variation of cross-sectional geometry at a high Reynolds number (Re) 

under turbulent flow would be an important future work.   

 

          In addition, we focused on closed box bridge deck only with a maximum side ratio (R) of 8. 

However, open box (Bottom surface is open) bridge deck with fairing are often adopted for cable-

supported bridges. The mechanism and effectiveness of fairing for this kind of open girder bridge  
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deck would be different from that of a closed girder bridge deck as the bottom surface leading edge 

separated shear layer will roll up in between the girders instead of going at the trailing edge side. 

Moreover, the optimum fairing angle may also vary from that of a closed box bridge girder as the 

bottom surface is no longer the control surface. Furthermore, the side ratio (R) of the bridge deck 

may reach up to a value of 12. Therefore, the investigation of the present study can be further 

extended for open box bridge deck with a higher side ratio (R>8) to compare the trend in the results 

and flow field with the current one for additional valuable information.  
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