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Abstract 

The present work aims to obtain a greater insight into the performance and capabili­
ties of the method developed with a high-order flux reconstruction approach for an implicit 
large-eddy simulation of transitional flows at low Reynolds numbers. The flux reconstruc­
tion scheme is examined with regard to feasibility, efficiency, and accuracy on two test cases, 
the Taylor–Green vortex problem and transitional flow over a wing SD7003, which were 
posed in the First and Second International Workshops on the high-order computational 
fluid dynamics method held in 2012 and 2013. 

The correction function used in the flux reconstruction scheme is the Radau polyno­
mial, which is equivalent to the discontinuous Galerkin scheme. A time-accurate implicit 
lower/upper symmetric Gauss–Seidel solution algorithm for the application of the flux re­
construction scheme to complex unsteady flows is developed, and it is found to be able 
to produce comparable results to the explicit Runge–Kutta scheme while achieving better 
computational efficiency. The effects of eddy viscosity calculated using the wall-adapting 
eddy viscosity model are evaluated and compared to no sub-grid scale modelling. 

First, the Taylor–Green vortex problem is considered at Reynolds number of 1,600. 
Simulations are carried out with polynomials of degree p = 1, 2, 3, 4, 5, 7 resulting in up 
to eight-order-accurate flux reconstruction scheme. Domains involving from 643 to 2563 

degrees of freedom covers severely under-resolved to well-resolved scenarios. At polyno­
mial orders p = 5, 7, stronger instabilities appear in the solution as the mesh resolution 
decreases. The dissipation added by the sub-grid model seems to have a stabilizing effect— 
to some degree—on the solution at high polynomial orders. 

Secondly, the transitional flow over a SD7003 wing at Reynolds number of 60,000 is 
examined. Simulations are carried out at α = 4◦ and 8◦ with polynomials of degree p = 
1, 2, 3 resulting in second-, third-, and fourth-order-accurate flux reconstruction schemes, 
respectively. Two structured hexahedral O-grid domains that differ in the grid resolution in 
a circumferential direction on the upper surface of the wing are considered, with a maximum 
of 2,000,000 degrees of freedom for the fourth-order (p = 3) simulations on the finer domain. 
The eddy viscosity added through the sub-grid-scale model is found to have little effect on 
the solution. The results are validated by comparison with many reference data obtained 
from various high-order schemes using time-accurate explicit/implicit methods. The results 
agree reasonably well. The method developed with FR can be a reliable tool for ILES for 
low Reynolds number flows. 
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Chapter 1
 

Introduction 

Today, with the increase of the practical importance of low Reynolds number flows, which 
are 2–3 orders of magnitude lower than the flight Reynolds number of 50 million for large 
transport aircraft, the importance of research into low Reynolds number flows is also in­
creasing. Figure 1.1 illustrates a wide range of Reynolds numbers. Contemporary appli­
cation examples at low Reynolds number include small windmills, micro gas turbines for 
power generation, micro-aerial vehicles known as drones, and long-endurance reconnais­
sance airplanes, which fly at very high-altitude. For example, according to the aerospace 
forecast published by the Federal Aviation Administration (FAA) for the years 2010–2030,1 

currently some 100 U.S. companies, academic institutions, and government organizations 
are developing over 300 types of unmanned aerial systems. It has been estimated by the 
FAA that 15,000 unmanned units will be employed by 2020 and 30,000 units by 2030, 
many of them probably designed for operation at low Reynolds number flows. The inter­
ested reader is referred to handbook [1] for further information on unmanned aerial vehicle 
(UAVs). 

The Reynolds number assumed for such applications ranges from 104 to 105 . The 
flow around an airfoil under this condition is characterized by a laminar-separation bubble 
(LSB). Such a flow has an unsteady three-dimensional nature, where initial acoustic or 

1Federal Aviation Administration (FAA), FAA Aerospace Forecast: Fiscal Years 2010– 
2030, http://www.faa.gov/data_research/aviation/aerospace_forecasts/2010-2030/media/ 
2010ForecastDoc.pdf (Retrieved: 5 June, 2015) 

1
 

http://www.faa.gov/data_research/aviation/aerospace_forecasts/2010-2030/media/2010 Forecast Doc.pdf
http://www.faa.gov/data_research/aviation/aerospace_forecasts/2010-2030/media/2010 Forecast Doc.pdf


2 Chapter 1. Introduction 

Figure 1.1: Range of Reynolds numbers with representative applications. 

vortical perturbations at a tiny scale within the boundary layer are amplified in time, re­
sulting in the growth of two- or three-dimensional instabilities. Numerical simulations able 
to predict this phenomenon successfully could significantly improve the design capability 
of low-Reynolds number aerospace applications, because LSBs have a strong influence on 
the performance of an airfoil. For example, a common strategy to reduce or avoid LSBs is 
to use airfoil turbulators, which are well-known mechanical devices for generating artificial 
disturbances forcing the boundary layer to become turbulent. However, such improvements 
at low flight speed have a cost, because the turbulators increase drag at cruise conditions. 
Feasible and accurate numerical simulations could lead to optimized turbulators or other 
novel strategies. 

However, the transition to turbulence is a complex and challenging problem dependent 
on various factors ranging from the flow conditions (Re, M) to the local surface character­
istics [2], as many pilots of modern gliders with laminar profiles—who expend much effort 
to remove dirt, such as bugs, from the wing surfaces after each flight—may agree. The 
simulations of flows with boundary layer transition and flow separation are non-trivial, and 
because of flows complexity, an accurate prediction of a transitional flow by a numerical 
simulation requires a scheme with low numerical viscosity and low dispersion errors. 



3 1.1. Approach 

This illustrates the following quote: 

Perhaps the single, most critical area in CFD simulation capability that will 
remain a pacing item by 2030 in the analysis and design of aerospace systems is 
the ability to adequately predict viscous turbulent flows with possible boundary 
layer transition and flow separation present. – NASA CFD Vision 2030 [3] 

In the aforementioned vision study, the authors purposely defined a set of challenging prob­
lems. Some of these problems may not be feasible by 2030, but the successful achievement 
would be rightfully considered a milestone in engineering design capability. Before those 
goals can be achieved, the significant advances in many areas of computational fluid dy­
namics are needed because the improvement of computational power alone would not be 
sufficient [3]. 

Recently, the attempt to capture the complex flow mentioned above by high-order 
accurate and high-resolution schemes, together with the large-eddy simulation (LES) or 
ILES models without explicit sub-grid-scale eddy viscosity, show remarkable success in 
accounting for the transitional phenomena as well as the characteristic surface pressure 
and skin friction. However, the simulations are far from trivial and all employ state-of-the­
art numerical schemes and essential computer resources to capture the transitional location, 
the turbulence statistics, and the unsteady aerodynamic forces due to the fluctuation of 
the separated shear layer. Several groups have employed unstructured grid methods with 
high-order accuracy, such as the DG method and SD method, which have made remarkable 
progress in the theory and applications in the last decade. The unstructured method is 
thus worth further exploration due to its inherent applicability to complex geometries and 
the ability of local h/p adaptations. In the present work, we examine Huynh’s high-order 
flux reconstruction scheme (FR) [4, 5, 6] for the implicit large-eddy simulations (ILES) of 
a transitional flows at low Reynolds numbers. 

1.1 Approach 

The method developed with a high-order FR is examined with regard to feasibility, effi­

ciency, and accuracy on two test cases, the TGV problem at a Reynolds number of 1,600, 
which is a canonical flow exhibiting homogeneous turbulence, and a low Reynolds num­

ber transitional flow over a rectangular infinite SD7003 wing, which represents a realistic 
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aerospace application. Simulations of the TGV at a Reynolds number of 1,600 are carried 
out on four mesh resolutions with a maximum of 2563 degrees of freedom for the highest 
polynomial order of 7, corresponding to eighth-order accuracy in space. 

The transitional flow over a SD7003 wing is simulated on two meshes with a maximum 
of 2,000,000 degrees of freedom for the fourth-order (p = 3) simulations on the finer domain. 
Two angles of attack are considered, 4◦ and 8◦, representing two flows characterized by 
transition along long and short separation bubbles, respectively. 

To enhance the numerical efficiencies of FR for an unsteady analysis, a time-accurate 
implicit lower/upper symmetric Gauss–Seidel (LU-SGS) solution algorithm for the applica­
tion of the FR to complex unsteady flows is developed. Several numerical parameters of the 
LU-SGS scheme are investigated to limit numerical errors and investigate the performance 
and accuracy of the algorithm. 

In the present work, we follow the implicit large-eddy simulation (ILES) approach. The 
unresolved small eddies are accounted for by numerical dissipation of the scheme and no 
sub-grid-scale model is employed. Boris [7, 8] discusses why the ILES approach should work 
from a physical point of view. Previous studies on FR [9, 10] and DG [11] have considered 
the dissipation and dispersion properties of the scheme by a von Neumann analysis. They 
showed that the dissipation of the scheme becomes progressively more focused on the higher 
wave numbers as the order of accuracy (polynomial degree) increases. This property gives 
us confidence in ILES by FR without using any special techniques, such as a posteriori 
filters. Moreover, the FR scheme with Radau polynomials as correction functions and 
Legendre–Gauss points recovers the DG scheme, i.e., DG via FR. We, therefore, assume 
that the FR scheme is also suitable for ILES, as was shown for DG [11, 12, 13]. 

Also, other researchers have reported the successful use of ILES for simulations of 
low Reynolds number transitional flow using various high-order numerical schemes. For 
example, ILES approaches have been successfully used by Visbal et al. [14, 15, 16] with a 
sixth-order compact difference method; by Uranga et al. [12, 17] using a DG method; and 
by Zhou and Wang [18], and Castonguay et al. [19] using a SD method. In general, the 
ILES approach seems to be successful in predicting the transitional flow, but the effects of 
explicit sub-grid-scale modeling on the solution are worth of further exploration. Therefore, 
selected simulations are recomputed in the LES framework and compared to ILES. 
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1.2 Outline of the Thesis 

The contribution of the present work is twofold: first, to obtain a greater insight into the 
performance and capabilities of the method developed with a high-order flux reconstruction 
scheme, as a reliable tool for ILES for transitional flows at low Reynolds number; and 
secondly, to provide a comprehensive database of positive results (over 100,000 single-CPU 
hours in total) that could motivate further research on FR, as well as facilitating the 
evaluation of other state-of-the-art numerical schemes in the future. The structure of the 
document is the following: 

Chapter 2 
The reader is first introduced to the background behind the problem relevant to the 
present study, while additional literature references are provided for the interested 
reader: 1) LES and ILES approaches are briefly introduced; 2) an overview of high-
order numerical schemes is given; 3) additional information on the laminar–turbulent 
transition and laminar-separation bubble is provided. 

Chapter 3 
This chapter describes the computational methods and methodology used during this 
study, from the governing equations and flux reconstruction scheme to the setup and 
solver. 

Chapter 4 
This chapter is on the validation of the current approach for the Taylor–Green vortex 
problem at Re = 1,600. The chapter is divided into two main parts: first, the effects 
of the polynomial order on the solution are examined; and second, LES and ILES are 
compared, while the positive effect of the eddy viscosity on the numerical stability is 
identified. 

Chapter 5 
The FR approach is successfully applied to a realistic aerospace application, repre­
sented by a transitional flow over a wing at Re = 60,000. To obtain representative 
statements for the behavior and performance of the FR scheme for realistic low-
Reynolds number flow applications, numerous scenarios are simulated including dif­
ferent polynomial orders, angles of attack, mesh resolutions, time-stepping schemes 
and sub-grid scale modeling. 
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Chapter 6 
The last chapter contains the conclusions that can be drawn from this work and lists 
the motivation for future work and perspectives. 



Chapter 2
 

Background 

2.1 Large-Eddy Simulation 

The first attempts at large-eddy simulation (LES) can be traced back to the pioneering 
work of Smagorinsky [20] and Lilly [21] for meteorological applications, and to work by 
Deardorff [22] and Schumann [23] for engineering. The principle behind LES is that the 
important large scales are fully resolved as they carry most of the flow energy, whereas 
small scales of little influence are accounted for through the modeling. In the early 1970s, 
the LES approach, which was originally proposed for simulating atmospheric flows, was ap­
plied to relatively simple flows. However, with the improvement of computing power, LES 
has gained tremendous popularity for the study of complex flows including multi-phase 
flow, heat transfer, combustion, aeroacoustics etc. Nowadays, the availability of LES in 
commercial CFD codes is promising to increase the number of industrial applications of 
simpler flows in the very near future. On the other hand, it is estimated that LES for 
industrial applications of greater complexity, such as the flow over an aircraft, will not 
be feasible for 20–30 years. In the CFD vision study published by the National Aero­
nautics and Space Administration (NASA) for 2030, four Grand Challenge problems for 
the required CFD capabilities in 2030 were defined. One of them is a wall-resolved LES 
simulation of a full powered aircraft configuration for the full flight envelope. We refer the 
reader interested in the prospects of LES in industrial applications to [24, 25, 26]. 

7
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The aforementioned distinction between resolved and modeled regions is via a low-pass 
filtering in the governing equations. Such a filtering operation reduces the range of scales 
that are being resolved; thus, it reduces significantly the computational cost compared to 
direct numerical simulations (DNS), which resolve the full spectrum of turbulence down 
to the smallest dissipative scales. On the other hand, the entire turbulence spectrum is 
modeled by a Reynolds-averaged Navier—Stokes approach (RANS). Therefore, the LES 
approach is promising to be more accurate than RANS, while less computationally de­
manding than DNS. 

Figure 2.1 illustrates the difference between RANS, LES and DNS for an example of a 
turbulent kinetic energy spectrum plotted as a function of the length scale of the turbulent 
structures. 

Figure 2.1: Turbulence energy spectrum. The figure has been redrawn based on [24]. 

The cutoff between the structures of a turbulent flow that are resolved and those that are 
modeled is done by the filtering operation. Two filtering operation approaches are widely 
recognized in LES. Explicit filtering applies an LES filter to the discretized governing 
equations, as an integral part of the solution process. Explicit filtering is performed on the 
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solution obtained from a finer grid; thus, it reduces the effective resolution of the simulation. 
This increases the computational cost considerably with (Δ)4 [27]. An advantage of explicit 
filtering is that the cutoff filter width (Δ) can be chosen independently of the mesh spacing. 
If the filter width is held fixed as the mesh is refined, the solution will converge to the true 
solution of the LES equations. Another advantage is that explicit filtering provides a way 
to control numerical errors, which dominate the high-energy portion of the spectrum [28]. 

The other filtering approach offers a straightforward implementation for LES in complex 
geometries. An implicit filtering procedure relies on a finite computational mesh together 
with the low-pass filtering effects of discrete derivative operators, which act as a filter. 
Thus, the small resolvable scales are proportional to the size of the local mesh. In contrast 
to the explicit filtering procedure, the solution will converge to a DNS as additional lengths 
are added each time the mesh is refined. The implicit filtering procedure has a disadvantage 
in that it does not provide any direct control of the energy in the high-frequency portion 
of the spectrum. This high-energy part, if coupled with the nonlinearities in the Navier– 
Stokes equations, can produce significant aliasing errors as discussed in [29]. Despite some 
disadvantages, the implicit—on the grid—filtering approach is commonly used for LES due 
to its lower calculation cost. 

To ensure the accurate transfer of energy between the unresolved and resolved turbu­
lent scales, the contributions from the unresolved scales smaller than the cutoff filter width 
Δ have to be accounted for [30]. In traditional LES, the contributions from the unre­
solved sub-grid scales (SGS) are included through a sub-grid model because they cannot 
be determined from the resolved flow field itself. Many different kinds of SGS models have 
been developed for LES [27, 31, 32, 33, 34]. Boris [7] discusses the properties of an ideal 
sub-grid model in detail. One of the most common selections for SGS modeling is based on 
the eddy-viscosity assumption from Boussinesq’s hypothesis [35]. The wall-adapting local 
eddy-viscosity (WALE) model is discussed more thoroughly in Section 3.4. 

An alternative to traditional LES is the implicit LES approach (ILES), which is based 
on a specific characteristic of the numerical scheme to mimic the physics of the unresolved 
turbulent motions. The sub-grid model is not implemented and the method stands on the 
numerical effects of the discretization to dissipate the energy at small scales. The absence 
of explicit sub-grid-scale models in the ILES approach offers computational efficiency and 
ease of implementation. 
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The first use of the ILES approach can be dated back to the early 1990s. Boris [36] 
assumed that the truncation errors of the numerical algorithm could in fact serve as an 
SGS model. Later, Boris and his collaborators at the Naval Research Laboratory (NRL) 
introduced the monotone integrated LES (MILES) approach. Since then, numerous groups 
have successfully employed the ILES approach to a wide range of applications in engineer­
ing, astrophysics and geophysics. The rationale behind the ILES with a high-order flux 
reconstruction scheme can be found in Section 1.1. In [7, 8], Boris discusses why the ILES 
approach should work from a physical point of view. 

2.2 High-Order Numerical Schemes 

High-order numerical schemes for solving the compressible Navier–Stokes equations on 
unstructured grids have been widely studied during the last decade. 

Conventional second-order-accurate schemes usually have higher numerical dispersion 
and dissipation; they are often insufficient to predict accurately the flow in applications 
with complex physics and multiscale problems, such as vortex-dominated flows, boundary 
layer separations or computational aeroacoustics (CAA). The low-order-accurate schemes 
(with an order of accuracy of 2 or lower) are mostly too dissipative to resolve these flows 
accurately. The required level of accuracy could be achieved with finer meshes; however, 
mesh refinement is inefficient for low-order methods [37]. 

Higher-order methods could provide several potential benefits. When high-order meth­

ods can be fully exploited, such as the expected smooth solution problems, they could pro­
vide significant savings in computational effort (see Wang [38]), keeping the computational 
cost of problems requiring a high level of accuracy in the acceptable range. Moreover, they 
are usually better suited for applications such as computational aeroacoustics due to their 
better wave propagation properties. Among the CAA community, high-order methods are 
popular for their accuracy and efficiency when solving CAA problems [39]. 

Many methods have been developed for structured meshes, e.g. finite difference schemes 
with extended stencils, compact finite difference schemes [40, 41], and ENO and WENO 
schemes [42, 43, 44, 45]. 

To create a structured grid for complex geometries is far more difficult, while unstruc­
tured grids offer far more flexibility and utilize computer resources efficiently. Thus, active 
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research on high-order methods for unstructured grids has led to the development of nu­
merical schemes, such as the discontinuous Galerkin (DG) [46, 47, 48], staggered-grid (SG) 
[49], spectral difference (SD) [50, 51] and flux reconstruction (FR) [5] methods. The un­
structured methods are promising due to their inherent applicability to complex geometries 
and the ability of local h/p adaptations. The reader is referred to the original articles, as 
well as to comprehensive surveys of high-order methods by Wang [52], Wang et al. [37], 
Huynh et al. [53] and Jameson [54]. These sources discuss several aspects of high-order 
research. 

2.3 Laminar Separation Bubble 

The flow around an airfoil at low Reynolds numbers is characterized by a laminar separation 
bubble (LSB), which was first described in detail by Gaster [55]. Figure 2.3 shows a sketch 
of a LSB on a wing. The flow at moderate angles of attack, e.g. 10 degrees, first separates 
near the leading edge, and then the transition of the separated shear layer from being 
laminar to being turbulent occurs over the wing. Finally, the turbulent shear reattaches 
on the surface to form the LSB. The forepart of the LSB just behind the laminar separation 
point has very low velocities while the reversed flow region appears in the aft part before 
the reattachment point. The size of the LSB varies according to the airfoil shape and 
flow conditions. From experimental data, it was found that the variables that significantly 
affect the physical dimensions of the separation bubble are the Reynolds number, external 
disturbance and the angle of attack [56]. The increase in Reynolds number and the angle of 
attack, in general, reduces the size of the LSB, while a failure of the shear layer to reattach 
leads to a stall. 

Figure 2.4 typically compares the pressure distributions on a wing for the inviscid 
solution and the viscous solution with an LSB. It shows that airfoil performance is affected 
remarkably. 
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Figure 2.2: Long and short laminar separation bubble.
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Figure 2.3: Schematical overview of a laminar separation bubble.
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Chapter 3
 

Methodology 

3.1 Governing Equations 

For calculations conducted in this study are used the three-dimensional, unsteady, com­

pressible Navier–Stokes equations. The Navier-Stokes equation of motion was derived by 
Claude-Louis-Marie Navier in 1827, and independently by Siméon-Denis Poisson in 1831. 

The motion of a compressible Newtonian fluid governed by the Navier–Stokes equations 
can be written in the conservation form as 

∂Q ∂E ∂F ∂G 
+ + + = 0, (3.1)

∂t ∂x ∂y ∂z 

with the initial condition 
Q(x, y, z, 0) = Q0(x, y, z). (3.2) 

In 3.1, t denotes time, Q is a vector of conservative variables, and E,F and G are the fluxes 
in the Cartesian coordinates x,y, and z, respectively, which take the following form ⎫
⎧
 ⎪⎪⎪⎪⎪⎨
 

ρ
 
ρu
 

⎪⎪⎪⎪⎪⎬
 
Q = ρv (3.3)
⎪⎪⎪⎪⎪⎩
 

ρw 
e 

13 

⎪⎪⎪⎪⎪⎭
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ρu 0
⎪⎪⎪⎪⎪⎨
 ρu2 + p 

⎪⎪⎪⎪⎪⎨
 

⎪⎪⎪⎪⎪⎬
 τxx 

⎪⎪⎪⎪⎪⎬
 
= Einv − EviscE = ρuv − τxy (3.4) 

ρuw
 
⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭

uτxx + vτxy 

τxz 

+ κ∂T+ wτxz ∂x 

⎪⎪⎪⎪⎪⎭
 

⎪⎪⎪⎪⎪⎩

(e + p)u
 

⎫⎧⎫⎧ 
ρv 0
⎪⎪⎪⎪⎪⎨
 ρuv
 

⎪⎪⎪⎪⎪⎨
 

⎪⎪⎪⎪⎪⎬
 τxy 

⎪⎪⎪⎪⎪⎬
 
= F inv − F viscF = ρv2 + p − τyy (3.5) 

ρvw
 
⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭
 
τyz 

+ κ∂Tuτxy + vτyy + wτyz ∂y 

⎪⎪⎪⎪⎪⎭
 

⎪⎪⎪⎪⎪⎩

(e + p)v
 

⎫⎧⎫⎧ 
ρw 0
⎪⎪⎪⎪⎪⎨
 ρuw
 

⎪⎪⎪⎪⎪⎨
 

⎪⎪⎪⎪⎪⎬
 τxz 

⎪⎪⎪⎪⎪⎬
 
G = Ginv − Gvisc = ρvw − τyz (3.6) 

ρw2 + p 
⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭

uτxz + vτyz 

τzz 

+ κ∂T+ wτzz ∂z 

⎪⎪⎪⎪⎪⎭
 

⎪⎪⎪⎪⎪⎩

(e + p)w
 

where components of the velocity vector (u, u, w) align with the Cartesian-coordinate di­
rections (x, y, z), κ is a thermal conductivity coefficient, T is temperature of the fluid, and 
superscripts inv, and visc denotes inviscid, and viscous terms, respectively. 

The total energy per unit volume e is represented by the following equation  
  

2 2 2u + v + w

e = ρ t + , (3.7)
2

and the t is an internal energy per unit volume, assuming the calorically perfect gas 

R 1 p
t = cvT = T = , (3.8)

γ − 1 γ − 1 ρ

where R is ideal gas constant, T is the temperature of the gas and γ is the constant ratio 
of specific heats set for air to 1.4. 
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The viscous stress tensor is defined by 

τxy = τyx = µ (uy + vx) 

τyz = τzy = µ (vz + wy) 

τzx = τxz = µ (wx + uz) 
2 

τxx = µ (2ux − vy − wz) (3.9) 
3
2 

τyy = µ (2vy − ux − wz)
3
2 

τzz = µ (2wz − ux − vy) . 
3

The viscosity coefficient µ is related with the absolute temperature, T , of an ideal gas given 
by Sutherland’s law [57], 

3/2 
µ T Tref + S 

= (3.10) 
µref Tref T + S 

where Tref is a reference temperature, µref is a viscosity at a reference temperature Tref , 
and S is the Sutherland temperature (110.4K for dry air). 

It is a common practice to work with the governing equations in a non-dimensional form 
as it makes the equations simpler, and highlights which terms are the most important. 
Dependent variables are non-dimensionalized by their respective reference values, e.g., 
density ρ∗ 

∞
∗ , temperature T ∗ ∗ Length scales ∞, speed of sound c ∞, viscosity coefficient µ∞. 

are non-dimensionalized by the reference length L∗, e.g., length of the airfoil. Dimensional 
values are written with the asterix as a superscript. 

ρ∗ ∗ ∗ ∗ ∗ ∗ ∗ u v w x y z 
ρ = , u = , v = , w = , x = , y = , z = ∗ ∗ L∗ρ∗ c c c ∗ L∗ L∗ 

∞ ∞ ∞ ∞
 
∗ ∗ ∗
 p p 1 e p 1   

2 2 2p = = p∞ = , e = = + ρ u + v + w ∗2 ∗2 (3.11)ρ∗ γp∗ γ ρ∗∞c γ − 1 2∞c∞ ∞ ∞ 
1 ∗ ∗ t ∗ ∗T c γp 2 µ

T = , c = = , t = , µ = 
T ∗ ∗ ∗ c ρ L∗/c∗ µ∞ ∞ ∞ ∞ 

Then, the non-dimensional governing equations takes following form 

∂Q ∂E ∂F ∂G 
+ + + = 0, (3.12)

∂t ∂x ∂y ∂z 
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where ⎫
⎧
 ⎪⎪⎪⎪⎪⎨
 

ρ
 
ρu
 

⎪⎪⎪⎪⎪⎬
 
Q = ρv (3.13)
⎪⎪⎪⎪⎪⎩
 

ρw
 
e
 

⎪⎪⎪⎪⎪⎭
 

⎫⎧⎫⎧ 
ρu 0
⎪⎪⎪⎪⎪⎨
 ρu2 + p 

⎪⎪⎪⎪⎪⎬
 

⎪⎪⎪⎪⎪⎨
 τxx 

⎪⎪⎪⎪⎪⎬
1
 
= Ei − EvE
 − τxy = ρuv
 (3.14)


Re τxzρuw
 
⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭
 

⎪⎪⎪⎪⎪⎭
uτxx + vτxy + wτxz + µ ∂T 
(γ−1)Pr

(e + p)u
 ∂x 

⎫⎧⎫⎧ 
ρv 0
⎪⎪⎪⎪⎪⎨
 ρuv
 

⎪⎪⎪⎪⎪⎬
 

⎪⎪⎪⎪⎪⎨
 τxy 

⎪⎪⎪⎪⎪⎬
1
 
= F i − F v = ρv2 + pF
 − τyy (3.15)


Re τyzρvw
 
⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭
 

⎪⎪⎪⎪⎪⎭
uτxy + vτyy + wτyz + µ ∂T 
(γ−1)Pr

(e + p)v
 ∂y 

⎫⎧⎫⎧ 
ρw 0
⎪⎪⎪⎪⎪⎨
 ρuw
 

⎪⎪⎪⎪⎪⎬
 

⎪⎪⎪⎪⎪⎨
 τxz 

⎪⎪⎪⎪⎪⎬ ⎪⎪⎪⎪⎪⎭
 

1
 
G = Gi − Gv = ρvw − τyz . (3.16)

Re
ρw2 + p τzz 

⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎩
 

⎪⎪⎪⎪⎪⎭
 uτxz + vτyz + wτzz + µ ∂T 
(γ−1)Pr

(e + p)w
 ∂z 

Two dimensionless parameters Pr and Re newly appears in eq. 3.13-3.16. The Pr stands 
for a dimensionless Prandtl number defined as the ratio of momentum diffusivity to thermal 
diffusivity 

c ∗ µ ∗ 

Pr = p
, (3.17)

κ∗ 

set for air to Pr = 0.72. The latter, Re is Reynolds number defined as the ratio of of 
momentum forces to viscous forces 

ρ∗ ∗ 
∞c∞L∗ 

Re = . (3.18) 
µ ∗ 
∞ 
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Please note that in Equation (3.11) are variables non-dimensionalized by the speed of 
sound c∞

∗ . It is common practice in CFD to use reference velocity. Therefore, as we do not 
wish to confuse the reader, results presented in this study are following these conventions, 

∗ 
thus, e.g., streamwise velocity is presented as u =
 u 

u ∗∞ 
, non-dimensional time t =
 t ∗ 

L∗/u∗
∞ 

etc.
 

3.2 High–Order Flux Reconstruction Approach 

The FR method is originally developed by Huynh [4, 5, 6], and the high-order accuracy of 
the FR scheme is achieved by the reconstruction of a high-degree solution polynomial on a 
given set of solution points (SP) in each computational cell/element. This concept is well 
known and used in other high-order methods, such as DG and SD. Like the SD method, 
FR is based on the differential form of Euler/Navier-Stokes equations. In contrast, the 
FR method needs only one grid for flux and solution points, rather than the two required 
by the SD method as shown in Figure 3.1. Huynh found links between several existing 
schemes (FR, DG, and SD), and their simpler and more economical equivalents can be 
recovered in the FR framework [4]. As the high-order flux reconstruction scheme has 
promising potential, research is being undertaken by several leading research groups in the 
CFD community. Recent advances are discussed in section 3.2.1. 

a) b) 
(−1, 1) (1, 1) 

η3 

η2 

η1 

(−1, −1)ξ1 ξ2 ξ3 (1, −1) 

Figure 3.1: A sketch of the placement of solution and flux points within a standard 2D 
square element: a) solution points (red) and flux points (black) are staggered (spectral 
difference scheme) b) the flux is collocated with the solution (flux reconstruction scheme). 
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3.2.1 Recent Advances 

Huynh proved, in his work presented between 2007 and 2009, a unified formula that includes 
nodal DG and SD as well as the original g2 scheme in one dimension and tensor-product 
elements in multi dimensions, and in [6] (2011), he proved the reconstruction concept for 
triangles as well. This inspired the subsequent schemes called correction-procedure by 
reconstruction (CPR) [58] (2013) and energy-stable flux reconstruction (ESFR). These are 
also named after the authors as Vincent–Castonguay–Jameson–Huynh (VCJH) schemes 
[10] (2011), and they are applicable to simplex elements. 

Recently, several groups have investigated the performance of schemes from the FR 
family. Miyaji [59] (2011) and Haga, Kuzuu et al. [60] (2013) conducted numerical sim­

ulations with the localized artificial diffusivity (LAD) method for suppressing oscillations 
in the vicinity of shocks. In the latter, a method for body-fitted Cartesian unstructured 
grids for aerospace flow simulations, including shocks, was developed. Miyaji [61] (2012) 
showed that vortical flow simulations exhibited a high-resolution property for large-scale 
vortices in a practical application of the leading-edge separation vortices of a laminar flow 
over a delta wing. For the ‘resolved’ vortices with given DOFs, the effect of the order of 
accuracy was determined and the method was compared with the finite-volume method. 
Liang, Cox, and Plesniak [62] (2013) compared FR with a SD scheme. They reported that 
FR was 27 percent faster than SD for an inviscid flow and over 40 percent faster than 
SD for viscous flow; both were fourth-order methods. Vermeire, Cagnone, and Nadarajah 
[63] (2013) and Vermeire, Nadarajah, and Tucker [64] (2014) conducted validation studies 
of unsteady isentropic vortex advection, supersonic flow through a curved duct, viscous 
circular Couette flow, the Comte-Bellot-Corsin experiment, the Taylor–Green vortex and 
turbulent channel flow. The FR scheme achieved the expected degree of accuracy and the 
results showed good agreement with previous numerical and experimental studies. Three-
dimensional turbomachinery flows were simulated by Lu, Liu, and Dawes [65] (2012) and 
[66] (2013). Skarolek and Miyaji [67] (2014) conducted implicit large-eddy simulations 
with an FR scheme of a transitional flow at low Reynolds number of 60,000 around the 
SD7003 wing. The computed separation, reattachment, and aerodynamic forces (CL and 
CD) agreed reasonably well with many reference data obtained from various high-order 
schemes using time-accurate explicit/implicit methods. Grazia, Mendalgo et al. [68] (2013) 
analyzed connections between three versions of nodal DG and two FR schemes to identify 
which version of DG is in fact recovered. 
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Yu, Wang, and Liu [69] (2014) analyzed and compared the numerical accuracy and 
efficiency of quadrature-based DG, nodal DG, SD and FR schemes for the conservation 
laws. They reported that most schemes from the FR family cost less work units; i.e., they 
have a lower calculation cost to achieve a desired error level than other high-order methods 
on both linear and curved elements. Bull and Jameson [9, 70, 71] (2014, 2015) investigated 
the ability of FR schemes to perform an accurate and stable computation of a compressible 
Taylor–Green vortex. The FR showed good performance for simulations of turbulent flows 
on coarse meshes. Asthana and Jameson [72] (2014) focused on a complete modal analysis 
of the FR formulation and identification of spectrally optimal FR schemes with minimal 
dispersion and dissipation. Spiegel, Huynh, and DeBonis [73] (2015) investigated an over-
integration approach, as a way of preventing aliasing errors for the FR, on simulations of 
the isentropic Euler vortex problem. As the over-integration approach for some test cases 
did not improve the robustness of the FR, the authors discuss and analyze the difficulties 
that they experienced with the vortex problem in [74]. A comprehensive review of recent 
advances can be found in Huynh et al. [53]. 

3.2.2 A Brief Review of the Formulation 

The flux reconstruction scheme proposed by H. T. Huynh [4, 5, 6] implemented in the 
solver is briefly reviewed in this section. 

The conservation form of the Navier–Stokes equations (see Section 3.1) is, 

∂Q ∂E ∂F ∂G 
+ + + = 0, (3.19)

∂t ∂x ∂y ∂z 

where t is time, Q is a vector of conservative variables, and E, F and G are flux vectors 
including inviscid and viscous terms. The computational domain is discretized into non-
overlapping elements Ωj . It is convenient to transform each Ωj in the physical domain 
(x, y, z) to a standard cube element Ωs in the transformed space (ξ, η, ζ), where (ξ, η, ζ) ∈ 
[−1, 1] × [−1, 1] × [−1, 1] as shown in Figure 3.2. The transformation can be written as: ⎛ ⎞ ⎛ ⎞ 

x(ξ, η, ζ) K xiK ⎝y(ξ, η, ζ)⎠ = Mi(ξ, η, ζ) ⎝yi ⎠ , (3.20) 
z(ξ, η, ζ) i=1 zi 

where K is the number of points defining the physical element, (xi, yi, zi) are the Cartesian 
coordinates at those points and Mi(ξ, η, ζ) are shape functions. 
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x

y

x=Mi( , )

Figure 3.2: Mapping between the physical space (x,y) and the computational space (η,ξ) 
for the quadrilateral element. 

The conservation equations transformed from the physical domain into the computa­

tional domain are written as: 

∂QE ∂EE ∂FE ∂GE
+ + + = 0, (3.21)

∂t ∂ξ ∂η ∂ζ 

QE = J ·Q, EE = ξE 
xE +ξE 

yF +ξE 
zG, FE = ηExE +ηEyF +ηEzG, GE = ζE 

xE +ζE 
yF +ζE 

zG, (3.22) 

where the Jacobian and metrics of the transformation are calculated from (3.20) as: 

J = xξ(yηzζ − yζ zη) + xη(yζ zξ − yξzζ ) + xζ (yξzη − yηzξ), (3.23) 

ξE 
x = yηzζ − yζ zη, ηEx = yζ zξ − yξzζ , ζE 

x = yξzη − yηzξ, . . . (3.24) 

The polynomial of degree p, defined on N = p + 1 solution points, is used to represent 
the approximate solution inside each element Ωs. The FR method offers some degree 
of flexibility for the choice of solution points, e.g., equidistant points, Legendre–Gauss– 
Lobatto (LGL) points (see Figure 3.3a), or Gauss–Legendre (GL) points (see Figure 3.3b). 
The interested reader is referred to original papers by Huynh [4, 5, 6]. In this study, we 
chose the Gauss–Legendre points for the solution and flux points. Two 1D elements with 
GL points are shown in Figure 3.4. 
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3.2. High–Order Flux Reconstruction Approach 

a) LGL points b) GL points c) two neighboring computational cells 
with GL points (red p = 2, blue p = 3)(1, 1)(−1, 1) 

η3 

η2 

η1 

(1, 1) (−1, 1) 

η3 

η2 

η1 

(−1, −1)ξ1 ξ2 ξ3 (1, −1) (−1, −1)ξ1 ξ2 ξ3 (1, −1) 

Figure 3.3: A standard 2D square element: a) Legendre–Gauss–Lobatto points lie on the 
cell edges, b) Gauss–Legendre points all lie inside the computational cell, c) two neighboring 
computational cells with Gauss–Legendre solution points, where black color shows the base 
grid, red color shows p = 2, and blue color p = 3 scheme. 

Suppose nodal solutions are denoted as EQi,j,k,l at the (j, k, l) solution points in the cell 
i, then the piecewise-continuous pth-order solution polynomials can be reconstructed using 
the following tensor product of three 1D Lagrange polynomials of degree p = N − 1: 

N N NKKK 
(J−1 EQi(ξ, η, ζ) = i,j,k,l · Qi,j,k,l)φj (ξ)φk(η)φl(ζ), (3.25) 

l=1 k=1 j=1 

where 
NN ξ − ξm

φj (ξ) =	 (3.26)
ξj − ξm 

m=1,m =j 

is the Lagrange basis polynomial. The solution is thus reconstructed with N3 solution 
points in the cell. The cell local flux polynomials are obtained in a similar way from the 
flux values EE(Qi,j,k,l), FE(Qi,j,k,l) and GE(Qi,j,k,l) at the (j, k, l) solution points as follows: 

KN N NKKEEi(ξ, η, ζ) = EEi,j,k,lφj (ξ)φk(η)φl(ζ). (3.27) 
l=1 k=1 j=1 

FE(Qi,j,k,l) and GE(Qi,j,k,l) are obtained in a similar way. The flux is collocated with the 
solution. It improves numerical efficiencies in evaluating Jacobian and metrics, but it may 
result in errors for non-linear flux like in the Navier-Stokes equations, compared with a 
staggered-grid arrangement in Kopriva and Kolias [49]. 

The element-wise solution functions are generally discontinuous across the interfaces, as 
depicted in Figure 3.5. To obtain a globally continuous flux polynomial, the discontinuous 
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Figure 3.4: Two 1D reference elements for p=2. Solution points are represented by red 
circles and flux points by blue squares. 

fluxes need to be corrected to match the common values at the cell interfaces. This is 
important to prevent any loss of interaction between adjacent cells. Huynh proposed 
adding correction functions to modify the discontinuous flux polynomials in a convenient 
way that they match the common interface fluxes at the left and right interfaces of the 
element. The correction function, which is a polynomial of degree N , requires an additional 

Figure 3.5: Approximate flux EE in the standard element are generally discontinuous across 
cell interface. 

N − 1 conditions together with prescribed boundary conditions (3.29). Huynh derived 
various correction functions from Legendre, Radau or Lobatto polynomials. The choice 
of correction function has an influence on the stability and accuracy. With the Radau 
polynomial gDG, a scheme identical to nodal DG can be recovered. gSG denotes the function 
that is defined on N + 1 Chebyshev–Lobato points, from which a simplified version of the 
staggered-grid [49] (SG) scheme can be recovered. The scheme with gSG is less accurate 
but has better stability compared to the scheme with gDG. The Radau polynomials are 
chosen as the correction functions for inviscid and viscous fluxes, thus the scheme recovered 
is identical to nodal DG as shown by Hyunh [5] and Grazia et al. [68]. 



23 3.2. High–Order Flux Reconstruction Approach 

The corrected, globally C0-continuous flux polynomial EEiC is close to EEi and it should be 
a polynomial of degree p + 1. This ensures that its spatial derivative has degree p = N − 1, 
the same polynomial degree as Qi in (3.19). The common inviscid numerical fluxes can be 
evaluated at each interface using a simple Rusanov solver [75]. In Figure 3.7 is shown how 
the numerical flux at cell interface is computed using left-, and right-side values. 

With the common numerical flux EEcom (ηk, ζl) (k, l = 1, . . . , N) at the boundary in thei±1/2

ξ direction, the corrected flux polynomial EEiC is 

N   K EEcomEEC (ξ, ηk, ζl) = EEi,j,k,l · φj (ξ) + (ηk, ζl) − EEi(−1, ηk, ζl) gL(ξ)i i−1/2

j=1
   

Ecom+ E (ηk, ζl) − EEi(1, ηk, ζl) gR(ξ), (3.28)i+1/2

where i − 1/2 and i + 1/2 represent the left and right interfaces of the cell i, respectively. 
gL and gR are the left and right correction functions (see Figure 3.6); they are polynomials 
of degree p + 1 with prescribed boundary conditions: 

gL(−1) = 1, gL(1) = 0, gR(−1) = 0, gR(1) = 1. (3.29) 

The derivative of the corrected flux polynomial EEiC (3.28) in the following equation is 
used to evaluate the term EEξ in (3.21): 

N   K EEcom �(EEiC )ξ(ξ, ηk, ζl) = EEi,j,k,l · φ�
j (ξ) + i−1/2(ηk, ζl) − EE(−1, ηk, ζl) gL(ξ)
 

j=1
   
Ecom �+ E (ηk, ζl) − EE(1, ηk, ζl) g (ξ). (3.30)i+1/2 R

The derivatives FEη and GEζ can be evaluated in a similar manner. 
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Figure 3.6: The numerical flux at cell interface is computed using left-, and right-side 
values. 

Figure 3.7: Examples of left and right corrections for the case p = 2. Degree p + 1 flux 
correction functions gL = gL(ξ) and gR = gR(ξ) approximate zero in some sense and satisfy 
prescribed boundary conditions. 

Figure 3.8: The approximate correction flux, obtained as scaled correction function gL, is 
added to the approximate discontinuous flux EE. The process is repeated for left and right 
interfaces of all cells. The corrected, globally C0-continuous flux polynomial EEC is close to EE and it should be a polynomial of degree p + 1. 
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A viscous flux vector is a function of conservative variables and their gradients. Calcu­
lation of the first derivative of quantity u with respect to ξ for the viscous term is similar 
to (3.30): 

NK     
C com com(ui )ξ = ui,j · φj (ξ) + ui−1/2 − ui(−1) gL(ξ) + ui+1/2 − ui(1) gR(ξ), (3.31) 

j=1 

with the indices k and l omitted for conciseness. The second Bassi–Rebay (BR2) [76] 
scheme with compact stencil is implemented to discretize the viscous fluxes. The common 
viscous flux ucom is evaluated as the average of the two, right and left, values at the i+1/2 

interface as: 
1 

u com = [ui(1) + ui+1(−1)] . (3.32)i+1/2 2 

A similar process to (3.31) is repeated to obtain the second derivative. (uC
i )ξ is discontin­

uous at the cell interfaces and common first derivatives are necessary. Since the corrected 
Cderivative (ui )ξ is readily available, we can obtain common derivatives at the interface as: 

1   
(uξ)

com R L 
i+1/2 = (ui )ξ(1) + (ui+1)ξ(−1) , (3.33)

2

R Lwhere (ui and (u )ξ are the derivative of the following functions that respectively )ξ i+1

employ the right and left correction functions in the cell i and i + 1:   
R com u (ξ) = ui(ξ) + u − ui(1) gR(ξ)i i+1/2   

L com ui+1(ξ) = ui+1(ξ) + u − ui+1(−1) gL(ξ). (3.34)i+1/2 

The viscous flux vectors are calculated at all solution points. Finally, when all divergence 
terms in (3.21) are evaluated at all solution points, any suitable time discretization method 
can be used to update the solution QEi,j,k,l in time. 

3.2.3 Connections between FR and DG 

In his original paper, Huynh [5] proved on a case of linear advection that a nodal DG scheme 
can be formulated taking the differential form inside the FR framework and vice versa. In 
2013, De Grazia et al. [68] examined connections between three nodal versions of DG and 
two FR schemes for the case of an advection equation to: 1) identify which variant of DG 
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scheme can be recovered by the FR; 2) demonstrate that schemes are also equivalent for a 
nonlinear advection equation. De Grazia et al. demonstrated, for a advection equation, the 
DG spectral element method (DGSEM) with an exact mass matrix and the DG recovered 
via FR are equivalent on a regular grid. The careful reader is referred to the original article 
for mathematical proof and numerical verification. 

3.3 Temporal Discretization 

Explicit and implicit algorithms for temporal discretization were used in the present study. 
The former, explicit schemes, such as the explicit Runge–Kutta (RK), are easy to im­

plement, and have a low CPU cost per iteration, since no matrices have to be inverted. 
On the other hand, explicit schemes suffer from low stability and hence have a limitation 
on the maximum allowable time step, especially for convection-dominated compressible 
flows, where viscous grids are clustered in the viscous boundary layer. The latter, im­

plicit schemes can advance the solution with significantly larger time steps, theoretically 
infinitely large. However, there are restrictions on the maximum allowable time step due 
to the non-linearities of the flow equations and the accuracy requirements of the unsteady 
flows. The matrix inversion causes the CPU cost per iteration to be significantly higher, 
and storing these matrices for matrix manipulations leads to higher memory requirements 
compared to explicit methods. 

In the FR solver are implemented: (i) a third-order accurate-in-time three-stage TVD 
Runge–Kutta explicit method (TVD-RK3) [77], (ii) the “classic” fourth-order accurate 
Runge–Kutta explicit method (RK4), and (iii) a second-order accurate-in-time implicit 
non-linear lower-upper symmetric Gauss–Seidel method (LU-SGS) [78]. 

Two types of implicit algorithms are widely used for high-order schemes on unstructured 
grids: LU-SGS and the generalized minimal residual (GMRES) solution algorithms. We 
would like to cite from the article by Gang, Yuewen, and Zhengyin [79], as we do not have 
previous experience with the GMRES: 

•	 The strong point of the GMRES scheme is that the quadratic convergence speed can 
be achieved as the size of the time step is close to infinite. 

•	 The GMRES scheme is characterized with high computational complexity and large 
memory consumption. 
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•	 LU-SGS does not require direct inversion of a large implicit system matrix. 

•	 LU-SGS is easier to implement and has a lower computational cost for marching one 
time step. 

•	 LU-SGS usually needs more iteration steps to reach the same convergence level com­

pared with GMRES. 

The use of the LU-SGS scheme in this study is motivated by available positive data from 
the literature. Kitamura et al. [80] employed the preconditioned LU-SGS for low-speed 
flows. Implicit LU-SGS has also been successfully used for SD and SV, such as the methods 
in papers by Sun et al. [78], Parsani et al. [81], and Kannan [82]. The LU-SGS scheme 
was adapted for SD by Sun et al., and the results indicate that LU-SGS can considerably 
improve the convergence rate for the flows they simulated. Due to the similarity of SD 
with FR is adaptation of the scheme for FR quite straightforward. 

3.3.1 Second-Order Accurate LU-SGS Algorithm 

An implicit non-linear lower-upper symmetric Gauss–Seidel (LU-SGS) [78] solution algo­
rithm has been adopted for the FR scheme, the LU-SGS is preconditioned by a block 
element matrix, and the system of equations is then solved with a direct LU decomposi­

tion solver. The LU decomposition solve on the element (or cell) matrix associated with 
each element (the left-hand side of the equation 3.40). 

The LU-SGS scheme that was originally first-order accurate is extended to be second-
order accurate in time. The following lines give a brief overview of the implemented scheme. 
Equation (3.21) is rewritten as: 

∂QEi 
= Ri(QE),	 (3.35)

∂t 

where QEi and Ri are vectors for the solution and residuals at all the solution points in the 
cell i with dimensions 5 × order3 . The semi-discrete equation using a three-point backward 
difference in time is 

3QEn+1 − 4QEn + QEn−1 
i i i Qn+1).= Ri( E	 (3.36)

2Δt 
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QEn+1 − QEn QEn+1Let Δ QEi = and since i is unknown on current time level, the residual 
Ri(QEn+1) can be linearized about the state at time index n by using a first-order Taylor 
expansion. The fully linearized equations for (3.36) can be written as  K QEn − QEn−13I ∂Ri ∂Ri i i− ΔQEi − ΔQEnb = Ri(QEn) + , (3.37)

2Δt ∂ E 2Δt∂QEi nb=i Qnb 

where nb indicates neighboring cells contributing to the residual of the cell i. Using a 
relaxation method,  

3I ∂Ri (k+1) 
K ∂Ri 

Q ∗ QEn
i − QEi

n−1 

− ΔQEi = Ri(QEn) + Δ Enb + , (3.38)
2Δt ∂ E ∂ E 2ΔtQi nb=i Qnb 

where superscript k is a sub-iteration index of the symmetric Gauss–Seidel and superscript 
∗ indicates the most recently updated solutions. Employing ingenious manipulations by 
Sun et al. [78] to eliminate matrices ∂Ri/∂QEnb which we do not want to store, one obtain K ∂Ri ∂Ri

Ri(QEn) + ΔQEnb 
∗ = Ri(QE∗ ) − ΔQEi 

∗ . (3.39) 
∂ E ∂ Enb=i Qnb Qi 

(k) (k)
Combining (3.38) and (3.39) together with Δ QE = QE −QEn, the final form can be written i i i 

as   
3I ∂Ri 

( E(k+1) − E(k) 3QEi 
∗ − 4QEi

n + QEi
n−1 

− Qi Qi ) = Ri(QE∗ ) − , (3.40)
2Δt ∂QEi 2Δt 

where the right-hand side is the unsteady residual that is found in (3.36) and it needs to 
drop sufficiently within sub-iterations for unsteady problems. A numerical or analytical 
approach can be used for the computation of the element Jacobi matrix. The analytical 
approach leads to a complex formulation whereas the numerical approach is easier to 
implement. We have used finite difference to compute the Jacobian matrix ∂Ri/∂QEi as 
used in [78], E E∂Ri Ri({QEnb}, Qi + t) − Ri({QEnb}, Qi)≈ , 

∂QEi t 

where t is a small parameter, t ≈ I QEiI × 10−8 . 

However, numerical computation of the Jacobian matrix ∂Ri/∂QEi with dimensions 
25 × order6 every iteration is quite expensive. Therefore, we have followed the Jacobi 
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matrix-freezing approach [78]. The Jacobi matrix is recalculated every n-th iteration, 
where n is usually between 10-100 in the literature. This approach can significantly increase 
efficiency, but careful validation is needed, as improperly high interval n could affect the 
results. 

3.4 Wall-Adapting Local Eddy-Viscosity Model 

We have implemented the wall-adapting local eddy-viscosity (WALE) model proposed by 
Nicoud and Ducros [83]. This model, like other eddy-viscosity models, belong to the class 
of functional sub-grid scale models. They reproduce the effect of the unresolved scales on 
the resolved field by treating dissipation of kinetic energy at sub-grid scales as analogous to 
molecular diffusion. Such an effect can be accounted for by addition of eddy viscosity (νsgs) 
to the solution, which is assumed to be proportional to the sub-grid dissipation. Thus, the 
aim of sub-grid modeling is to withdraw energy from the resolved turbulent structures in 
order to mimic the forward kinetic energy cascade in the unresolved part [27, 34]. 

Based on the use of the eddy-viscosity assumption, approximate of the sub-grid scale 
tensor is modeled as 

τ sgs ¯
ij = 2νsgs Sij (3.41) 

where νsgs is the eddy viscosity, and 

1 ∂ūi ∂ūj
S̄ij = + , (3.42)

2 ∂xj ∂xi 

is the rate-of-strain tensor of the resolved scales. 

Many models have been developed for calculation of the eddy viscosity νsgs, e.g., the 
Smagorinsky model [20], Germano’s dynamic Smagorinsky model [84], WALE model [83] 
and others. For more information on the topic of sub-grid scale modeling the reader is 
referred to [27, 34, 85]. 

The idea of the WALE model is reproduce the proper scaling at the wall with return­
ing the correct wall-asymptotic y+3-variation of the SGS viscosity [83], and the νsgs goes 
naturally to zero in the vicinity of a wall. In addition, this model is well-suited for LES in 
complex geometries because only local information is needed. 
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The WALE model computes the eddy viscosity (νsgs) and thermal diffusivity (κsgs) by: 
[83] 

(S̄d S̄d )3/2 
ij ij

νsgs = C2Δ2 , (3.43)
(S̄ij S̄ij )5/2 + ( S̄d S̄d )5/4 

ij ij 

where C is a model constant, Δ defines the characteristic filter length and S̄ij
d is the traceless 

symmetric part of the square of the resolved velocity gradient tensor ḡij 

∂ūi 
ḡij = (3.44)

∂xj 

given as 

S̄d 
ij = 

1 
2 

ḡ 2 
ij + ḡ 2 

ji − 
1 
3 
δij ̄g 2 

kk, (3.45) 

with 
ḡ 2 
ij = ḡik ̄gkj . (3.46) 

The thermal diffusivity κsgs is computed as 

κsgs = 
νsgs 

P rsgs 
. (3.47) 

In the present study, the model constant C is set to 0.3, a value that was also used by 
Lodato et al. [86]. The SGS Prandtl number, Prsgs is assumed constant and equal to 0.5 
[86, 87, 88]. Then, the x-component of the subgrid heat-flux vector, qsgs, is computed by 
[81, 89]: 

∂T̄ ∂T̄sgs νsgs 
q = cp = cpκsgs (3.48)x Prsgs ∂x ∂x 

In Equation (3.43), Δ defines the characteristic filter length. Usually computed as 
Δ = (ΔxΔyΔz)1/3, where Δx, Δy, Δz is the size of the cell in the x-, y−, z-direction, 
respectively. However, Parsani et al. suggested that for use with high-order schemes is 
more appropriate to choose the filter width depending on the order of the polynomial. 
Parsani et al. [81] suggested procedure for spectral difference scheme, where the order of 
the polynomial is taken into account through the division of the Jacobian determinant by 
the number of solution points as follows: 
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1/dim
Ji,l

Δi,l = , (3.49)
N 

where i is a computational cell with index, l index of each solution points, N(p, dim) is 
number of solution points, and J is the determinant of the Jacobian matrix. 

3.5 Computational Methodology 

The FR solver solves unsteady three-dimensional compressible Navier–Stokes equations 
using the flux reconstruction scheme for spatial discretization. All numerical simulations 
are carried out on structured hexahedral domains in this study, but the solver can also be 
applied to general unstructured hexahedral meshes. Structured meshes are generated in a 
commercial software for grid generation GridGen from Pointwise, Inc. 

Grid generation for a high-order simulation is a bit more challenging, as high-order 
methods can achieve similar accuracy on a much coarser mesh than low-order methods. 
Therefore, quite coarse meshes are often sufficient for a high-order simulations. How­

ever, special care must be taken to capture higher-order geometry information of curved 
boundaries with high-order polynomials, as the linear elements are often not suitable for 
higher-order discretizations [76]. In this study, a high-order grid is used. The grid has been 
curved in a circumferential direction, i.e. a curved direction, with the use of cubic-shaped 
elements for the cells on the curved boundaries. The shape functions (3.20) of the cells on 
curved boundaries must first be modified, and then the meshes prepared with three times 
finer curved direction in any suitable software. This manual refinement gives us the four 
points that are needed for cubic functions in each cell on the curved boundaries. 

Simulations in this study are computed by a parallel solver using the Message Pass­
ing Interface [90] (MPI). Computational domains are partitioned into the corresponding 
number of regions (number of CPUs) by the partitioning scheme Metis [91]. The maxi­

mum number of CPUs used in this study is 132. In order to make comparisons regardless 
of the machine used, the computational costs are provided normalized and expressed in 
work units. The work units are adopted from guidelines of the third HIOCFD. A three-
dimensional Navier-Stokes code (TauBench)1 developed at the German Aerospace Center 

1Data available online at http://www.as.dlr.de/hiocfd/taubench_src.tar.gz (Accessed: 
06/10/2015) 

http://www.as.dlr.de/hiocfd/taubench_src.tar.gz
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(DLR) for benchmarking was run on the machine equipped with Intel� Xeon� X5680 
CPUs running at 3.33 GHz. The average time over four runs was 7.89 s. The work unit is 
defined as T2/T1 where T2 is CPU time taken by our solver using a single CPU, excluding 
the initialization, post-processing, data preparation, and file I/O time. The time T1 is CPU 
time of the TauBench benchmark with 10 pseudo steps on the grid with 250, 000 DOFs, 
using a single CPU. 

The implicit LU-SGS scheme is used for a temporal discretization in the SD7003 wing 
(Chapter 5) test case. The calculation cost with the second-order accurate LU-SGS scheme 
is about 1.5% higher than the cost with the first-order accurate LU-SGS scheme. For 
simulations of the Taylor–Green vortex (Chapter 4) is used a third-order accurate-in-time 
three-stage TVD Runge–Kutta explicit method due to a lower memory consumption. This 
is especially noticeable at simulations using very fine domains with 2563 DOFs. 



Chapter 4
 

Taylor–Green vortex at Re = 1, 600 

The Taylor–Green vortex (TGV) problem is a canonical flow for which a turbulent energy 
cascade can be easily observed numerically. The TGV is started from a simple initial con­
dition. As the simulation continues, the flow transitions from an initially two-dimensional 
single-mode flow field to a three-dimensional fully turbulent flow. This transition at t ∗ > 0 
naturally occurs due to the existence of a pressure gradient in the flow field. The turbulent 
energy is transferred to smaller scales through the vortex-stretching mechanism, and the 
flow decays over a period of 20 seconds. 

The fully developed decaying turbulent flow contains small scales covering a full tur­
bulent spectrum and it exhibits the features of homogeneous turbulence. This makes the 
TGV problem a challenging test for numerical schemes, and as such, the TGV has become 
popular for code validation and evaluation of numerical schemes. 

In this chapter, results from numerical simulations of the compressible TGV problem 
at Re = 1600 using a flux reconstruction (FR) scheme recovering the nodal discontinuous 
Galerkin (DG) are presented and discussed. We employ this test case to validate our 
FR code, as well as to verify the ability and performance of the FR scheme for under-
resolved large-eddy simulations of turbulent flows. Simulations are carried out with degree 
p = 1, 2, 3, 4, 5, 7 polynomials resulting in second-, third-, fourth-, fifth-, sixth- and eight-
order accurate FR schemes, respectively. 

In the following, literature sources are discussed in Section 4.1, the computational setup 
is described in Section 4.2, and in Section 4.3, the results are presented and discussed. 

33
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4.1 Literature Review 

The TGV problem was proposed in the category of three-dimensional and difficult prob­
lems in the 1st and 2nd international workshops on high-order computational fluid dy­
namics methods (HIOCFD) held in 2012 and 2013. In those workshops, the participants 
compared their results using solvers based on various methods, such as DG, finite differ­
ence, finite volume, FR, and spectral difference methods. A summary of the 1st HIOCFD 
workshop and a description of 15 benchmark cases, which were adopted in the workshop, 
can be found in [37] and in the workshop website (http://zjwang.com/hiocfd.html). 
Additional information about the 2nd HIOCFD workshop can be found in the workshop 
website (http://www.dlr.de/as/hiocfd). However, reports of solutions of this flow using 
methods achieving high-order accuracy are not only restricted to HIOFCD. 

Direct simulation of three-dimensional turbulence in a TGV was performed by Brachet 
[92] in 1991. In his paper, Brachet used a pseudo-spectral method with a resolution of 
8643 . In 2011, van Rees [93] compared the hybrid particle-mesh vortex method against 
a pseudo-spectral method for the TGV at Re = 1600. It was shown by van Rees that 
the solution of the TGV at Re = 1600 was fully converged with 5123 degrees of freedom 
(DOFs). 

Following the recommendation of the HIOCFD committee, a pseudo-spectral compu­

tation is taken as a reference. The FR results presented in this study are compared to 
a pseudo-spectral computation performed by Carton de Wiart, Hillewaert, Duponcheel, 
and Winckelmans [94] (2013) on a 5123 mesh. The aforementioned authors performed 
TGV simulations at Re = 1600 using a DG method on hexahedral meshes and unstruc­
tured high-quality meshes. The TGV benchmark has also been studied by Gassner and 
Beck [95, 96] (2012) using a high-order discontinuous Galerkin spectral element method 
(DGSEM). Gassner and Beck investigated the accuracy of a high-order DG method for 
coarse under-resolved turbulence simulations. They employed high-order approximations 
up to p = 15. Although, the p = 7 and p = 15 simulations needed stabilization by 
de-aliasing via over-integration, they showed the good accuracy of the method for such 
simulations. 

DeBonis [97] (2013) performed TGV simulations using finite difference methods based 
on central differencing (up to 12th-order accurate) on grids ranging from 643 to 5123 . He 
also examined the effect of sub-grid models based on large-eddy simulation employing the 

http://zjwang.com/hiocfd.html
http://www.dlr.de/as/hiocfd
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Smagorinsky [20] and dynamic Smagorinsky [84] models. 

In 2012, Haga and Wang [37, 98] presented results from TGV simulations using the FR 
scheme at the 1st HIOCFD workshop. The FR schemes at p = 2, 3, 4 were successfully used 
by Haga and Wang on domains ranging from 643 to 963 (up to 32,768,000 DOFs at p = 4). 
Vermeire, Nadarajah and Tucker [64] (2014) examined the performance and suitability 
of the FR scheme for turbulent simulations on the Comte–Bellot–Corsin experiment, the 
TGV, and turbulent channel flow. 

Recently, Bull and Jameson [9, 70, 71] (2014, 2015) performed TGV simulations using 
schemes from a family of energy-stable flux reconstruction (ESFR) schemes developed at 
Stanford University. They conducted simulations on hexahedral [9] and tetrahedral meshes 
[71]. In their paper [9], Bull and Jameson compared two new FR schemes (called optimal 
ESFR and optimal FR) developed by Asthana and Jameson [72] (2015), which are opti­
mized for wave dissipation and dispersion properties, to the nodal discontinuous Galerkin 
(FR-DG) and spectral difference methods (FR-SD) recovered via the ESFR method. They 
found that the optimal ESFR scheme performed nearly identically to the FR-DG, whereas 
the optimal FR scheme tested was as stable as, but more accurate than, the FR-SD and 
FR-DG schemes. In their work, they successfully demonstrated that the FR scheme has 
low numerical dissipation and accurately reproduces the turbulent energy cascade on rel­
atively coarse grids. Moreover, they reported that all schemes at higher than fifth-order 
exhibit instabilities at low mesh resolutions. 

Despite that the performance of the FR scheme was quite thoroughly demonstrated 
earlier by Haga et al., Vermeire et al. and Bull et al., performing simulations of the 
TGV problem is still useful. The TGV simulations are important for the validation of 
computational fluid dynamics codes, and they are particularly useful during research into 
FR, as newly developed features can be easily tested and evaluated. 
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4.2 Numerical Setup 

We follow the guidelines for the computational setup from the 1st and 2nd HIOCFD 
workshops for numerical simulations presented in this chapter. 

4.2.1 Geometry and Initial Condition 

The flow is computed within a periodic square box of dimension 0 ≤ (x, y, z) ≤ 2πL, 
where L is the characteristic length of the box. The initial field is given by the following 
functions: 

u0(x, y, z) = V0 sin 
2 x 
L

 
cos 

2 y 
L

 
cos 

2 z 
L

 
,2  2  2  (4.1) 

v0(x, y, z) = −V0 cos 
x 
L

sin 
y 
L

cos 
z 
L

, (4.2) 

w0(x, y, z) = 0, (4.3) 

p0(x, y, z) = p∞ + 
ρ0 

16 
cos 

2x 
L 

+ cos 
2x 
L 

cos 
2z 
L 

+ 2 . (4.4) 

The flow is governed by the three-dimensional compressible Navier–Stokes equations 
with constant physical properties. The compressible fluid is a perfect gas with a constant 
ratio of specific heats γ = cp/cv = 1.4 and Prandtl number Pr = µcp/κ set to 0.71, where 
cp and cv are the heat capacities at constant pressure and volume, respectively, µ is the 
dynamic viscosity and κ is the heat conductivity. Simulations are carried out with a low 
Mach number set to M0 = V0/c0 = 0.1, where c0 is the speed of sound corresponding to 
the temperature T0 = p0/Rρ0. We consider the uniform initial temperature field T = T0; 
then, the initial density field is taken as ρ = p/RT0. The Reynolds number of the flow is 
set to 1600 and is prescribed by adjusting the viscosity. All the quantities involved in the 
study are assumed dimensionless using L, V0 and ρ0. 

The domain consists of a cubic box with periodic boundary conditions applied on all 
faces. Meshes are considered Cartesian with equal grid spacing composed of hexahedral 
elements. The TGV simulations are performed on meshes involving 643, 1283, 1923 and 2563 

DOFs, denoted as coarse, medium coarse, medium and fine, respectively. The maximum 
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resolution of 2563 DOFs seems often to be sufficient to represent the main characteristics 
of the flow (see [93]). Figures Figure 4.1a and b show an example of the fine domain 
with solution points shown in the bottom right quadrant and initial condition at t = 0 
visualized by iso-surfaces of the z-component of the vorticity. The computational domains 
are summarized in Table 4.1. 

(a): Periodic domain (b): z-vorticity at t ∗ = 0 

Figure 4.1: TGV simulation: (a) Periodic domain with SP shown in bottom right quadrant 
(2563 DOFs), (b) z-component of the vorticity shown at t ∗ = 0. 

Table 4.1: Computational domains employed in the FR computations of the TGV problem. 

solution hexahedral solution hexahedral 
order elements DOFs order elements DOFs 

p = 1 

323 

643 

963 

1283 

643 

1283 

1923 

2563 

p = 2 

213 

423 

643 

853 

633 

1263 

1923 

2553 

p = 3 

163 

323 

483 

643 

643 

1283 

1923 

2563 

p = 4 

133 

253 

383 

513 

653 

1253 

1903 

2553 

p = 5 

113 

213 

323 

433 

663 

1263 

1923 

2583 

p = 7 

83 

163 

243 

323 

643 

1283 

1923 

2563 
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4.2.2 Temporal Evolution 

A third-order three-stage TVD Runge–Kutta explicit method is used for time stepping. 
Computational domains are composed of regular hexahedral elements and the explicit 
scheme is preferred in this case, as it has considerably lower memory requirements at 
fine resolutions than implicit methods. The non-dimensional time step is set to Δt ∗ = 
4.5 × 10−4; this value is comparable with the literature [99]. This time step is small enough 
that lowering it does not affect our findings, since the main objective is to observe the 
effects of the spatial discretization on the solution. This time step corresponds to a range 
of the Courant numbers (CFL) between 0.07 and 1.5. 

The duration of the computation is set to t ∗ = 20. The simulation starts from large 
vortices, which immediately begin to evolve and interact with each other. At approximately 
t ∗ = 7, small structures of high-vorticity start to appear in the flow field. The most 
important region is a peak of the dissipation with the smallest turbulent structures, which 
occurs approximately at t ∗ = 9. After this peak, the fully developed turbulent flow starts 
to decay quickly. The flow evolving in time can be seen in Figure 4.2, where the solution 
on the medium mesh (1923) for p = 4 is visualized using iso-surfaces of pressure colored 
by the vorticity magnitude at several simulation times. 

(a): t ∗ = 0, initial (b): t ∗ = 3, inviscid 

Figure 4.2: TGV solution on the medium mesh (1923 DOFs) for p = 4 depicting the 
evolution of the flow field using iso-surfaces of pressure (0.99) colored by the vorticity 
magnitude (0:10). 
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(a): t ∗ = 5, vortex roll-up (b): t ∗ = 7, structure changes 

(c): t ∗ = 9, dissipation peak (d): t ∗ = 11, fully turbulent 

(e): t ∗ = 13, turbulent decay (f): t ∗ = 15, turbulent decay 

Figure 4.3: Continue of Figure 4.2: TGV solution on the medium mesh (1923 DOFs) for 
p = 4. 
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4.2.3 Diagnostics 

To analyze the results, several diagnostic quantities related to the turbulent motion are 
computed. The quantities are averaged in space over a volume V , and they are computed 
from the flow as it evolves in time. Firstly, the mean turbulent kinetic energy Ek (also 
named TKE in the literature) is given by 

1 1 
Ek = ρu · udV, (4.5)

2ρ0V V 

where u is the velocity vector. 

We can obtain the temporal evolution of the kinetic energy dissipation rate from the 
kinetic energy as 

dEk 
t1 = t(Ek) = − , (4.6)

dt 
where the temporal derivative is calculated using second-order finite differences. 

The temporal evolution of the mean enstrophy E is computed as 

1 1 E = ρω · ωdV, (4.7)
ρ0V V 2 

where ω is the vorticity vector. 

It can be shown that for an incompressible flow (ρ = ρ0) or a low Mach number flow 
with negligible compressible effects, the dissipation rate is related to the mean enstrophy 
E by a constant and is equal to 

µ
t2 = t(E) = 2 E . (4.8)

ρ0 

These volume-integrated quantities—the kinetic energy and enstrophy—are useful, as 
they allows us to evaluate the quality of the solution and reveal inaccuracies in the dis­
cretization of the gradients by the scheme employed. The kinetic energy dissipation rate 
t2 computed from the enstrophy E represents the dissipation due to the vorticity. Ideally, 
when using a method that is not numerically dissipative, the directly computed dissipation 
rate t(Ek) and the vorticity-based dissipation rate t(E) should be equivalent. 

For qualitative comparisons of solutions, we plot the iso-surfaces of the vorticity mag­

nitude, the iso-surfaces of the pressure and the positive values of the Q-criterion [100]. 
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4.3 Results at Re = 1600 

In this section, we present and discuss results from the TGV simulations at Re = 1600. 
Simulations are carried out with degree p = 1, 2, 3, 4, 5, 7 polynomials. Solutions from 
the implicit large-eddy simulation approach (without an explicit sub-grid model) are com­

pared to those obtained with the large-eddy simulation using the wall-adapting local eddy-
viscosity (WALE) model. The results are compared to the reference solution computed 
using a pseudo-spectral method on a 5123 mesh by Carton de Wiart et al. [94]. This 
reference solution is denoted as ‘spectral’ later in the text. The vortical structures are 
compared to results from Beck and Gassner [95] and Bull and Jameson [70]. 

4.3.1 Effect of the Polynomial Order on Solution 

Figure 4.4 compares the evolution of the mean turbulent kinetic energy Ek, dissipation rate 
t, and enstrophy E on a medium coarse mesh (1283 DOFs) and fine mesh (2563 DOFs) at 
p = 1, 2, 3, 4, 5, corresponding to second- to sixth-order accuracy. The reference spectral 
solution computed by Carton de Wiart et al. [94] on a 5123 DOFs mesh is plotted as red 
circles. Figures 4.4a and b show the evolution of Ek. On both meshes, Ek computed at p = 
1 deviates from the reference solution. Although there is a noticeable improvement with 
a higher mesh resolution, Ek decaying faster indicates that the numerical error introduced 
by the linear approximation of the solution dominates the behavior of the second-order 
scheme. On both meshes, the prediction for Ek significantly improves as the polynomial 
order increases. The calculated Ek matches the reference solution well in both well-resolved 
and under-resolved scenarios at p > 1. 

Figures 4.4c and d show the evolution of the directly computed dissipation rate t(Ek). 
At p = 1 on both meshes, t(Ek) grows fast at the early phase of the simulation, where 
the convective phenomena are predominant. As the polynomial order increases, t(Ek) gets 
closer to the reference solution. The largest discrepancies are expected at later times when 
the vortex core steepens into a high gradient, as the numerical dissipation significantly 
reduces the sharpness of the approximated velocity derivatives [99]. Figures 4.5a and b are 
a closer look at the peak dissipation rates t(Ek) at 7 < t ∗ < 12. Near t ∗ = 9, the peak 
of t(Ek) is slightly underpredicted for all p on a coarser mesh, whereas t(Ek) reasonably 
matches the reference solution on a finer mesh at p = 3, 4, 5. At p = 5 on both meshes, 
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oscillations are noticeable near the peak. The occurrence of these oscillations was reported 
by Gassner and Beck [95, 96] and Bull and Jameson [9, 70]. Gassner and Beck used a 
high-order DGSEM, whereas Bull and Jameson examined schemes from the FR family. 
In their paper, Bull and Jameson suggested that the origin of those oscillations is from 
large variations in the high-order polynomials within each element, and that the TGV flow, 
which has anti-symmetry in all three coordinate directions, may cause those variations to 
add up [70]. 

As expected by the previous statement, oscillations are significantly lower on a finer 
mesh (Figure 4.5a) than those on a coarser mesh (Figure 4.5b). This is due to the flow 
structures, which are represented with high-order polynomials within smaller elements. 
Section 4.3.2 presents the results computed on a coarse mesh (643). These coarse sim­

ulations at p = 7 suffered from instability. Thus, it seems that direct use of high-order 
polynomials for severely under-resolved simulations is not possible without employing some 
stabilizing mechanism. In their paper, Gassner and Beck [96] successfully used the over-
integration stabilization technique for their simulations at p = 7 and p = 15. In the next 
section, we discuss the effect of the implicit modeling of the sub-grid scale turbulence on 
the solution and whether it can enhance the stability of the calculation. 

Figures 4.4e and f show the evolution of the vorticity-related dissipation rate t(E). Fig­
ures 4.5c and d show details of the solution near the peak. Recall that the directly computed 
dissipation rate t(Ek) and the vorticity-based dissipation rate t(E) should be equivalent in 
an ideal case. Thus, the discrepancy between t(Ek) and t(E) provides an additional valu­
able insight into how well the employed scheme works. On a coarser mesh, t(E) gets closer 
to the reference solution as the polynomial order p increases. However, regardless of the 
polynomial order, the dissipation rate computed from the enstrophy (t(E)) is significantly 
lower than the dissipation rate directly computed from the kinetic energy (t(Ek)). On the 
other hand, the prediction improves with grid resolution and t(E) approaches the correct 
levels on a finer mesh. The results on a fine grid at p = 3 or higher agree well with the 
reference solution. On the other hand, the results on a medium coarse grid—employed to 
demonstrate the effects on the under-resolved turbulence—show that only p = 5 achieves 
a reasonable compliance with the reference solution. This indicates that there is in the 
simulations another source of dissipation than just the dissipation due to the turbulence, 
and its effect is more intense at low resolutions. A significant part of the discrepancy orig­
inates in the numerical dissipation of the FR scheme. Other secondary sources could arise 
from the temporal discretization error and the effects of the compressibility. 
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(a): Ek, 1283 DOFs (b): Ek, 2563 DOFs 

(c): t(Ek), 1283 DOFs (d): t(Ek), 2563 DOFs 

(e): t(E), 1283 DOFs (f): t(E), 2563 DOFs 

Figure 4.4: TGV solution on 1283 and 2563 DOFs meshes computed for all polynomial 
orders. 
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(a): t(Ek), 1283 DOFs (b): t(Ek), 2563 DOFs 

(c): t(E), 1283 DOFs (d): t(E), 2563 DOFs 

Figure 4.5: Detail of the TGV solution on 1283 and 2563 DOFs meshes computed for all 
polynomial orders. 

Figures 4.6 and 4.7 shows the TGV solution (0 ≤ x, y, z ≤ π) at p = 1 and p = 3 
for 643, 1283, 1923, and 2563 DOFs using iso-surfaces of the Q-criterion at time t ∗ = 8. 
The solution at p = 1 is shown in the left column. They are similar in shape compared 
to the p = 3 solution in the right column, but only very large structures are captured 
by the second-order scheme at all mesh resolutions. With higher polynomial order comes 
a significant improvement, and large-scale structures are complemented by much smaller 
structures. On a 643 DOFs mesh at p = 3, the small-scale structures seem to be captured, 
but the solution seems to be blurred and jagged because there is insufficient resolution. 
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(a): p = 1, 643 DOFs (b): p = 3, 643 DOFs 

(c): p = 1, 1283 DOFs (d): p = 3, 1283 DOFs 

(e): p = 1, 1923 DOFs (f): p = 3, 1923 DOFs 

Figure 4.6: TGV solution at p = 1 compared to p = 3 on the coarse (643 DOFs), medium 
coarse (1283 DOFs), and medium meshes (1923 DOFs). 
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(a): p = 1, 2563 DOFs	 (b): p = 3, 2563 DOFs 

Figure 4.7: TGV solution at p = 1 compared to p = 3 on the fine (2563) mesh. 

Figure 4.8 shows the details of the vortices computed on 2563 DOFs meshes at p = 
1, 2, 3, 4, 5 compared to each other. p = 2 shows the poorest performance among the 
presented cases. The solutions for the other polynomials p > 2 seem to be almost identical, 
with captured large- and small-scale structures. In Figure 4.9, the TGV solution at p = 3 
on a 2563 DOFs mesh is compared to DGSEM at p = 3, 15 on a 2563 DOFs mesh by Beck 
and Gassner [95] and DG recovered via FR at p = 3 on a 2563 DOFs mesh by Bull and 
Jameson [70]. The structures are almost identical. 

In this section, the effect of the polynomial order on the solution of the TGV using the 
FR scheme was investigated. We can summarize the main findings as follows: 

•	 Low polynomial orders p = 1, 2 show excessive numerical dissipation, which has an 
impact on the accuracy of predictions. 

•	 Predictions improve as the polynomial order increases, especially on coarse meshes. 

•	 At high polynomial orders p = 5, 7, stronger instabilities appear in the solution as 
the mesh resolution decreases. 

•	 p = 3, 4 show a good balance between stability and performance. 

•	 For the practical use of higher polynomial orders, a stabilizing technique must be 
employed. 



47 4.3. Results at Re = 1600 

(a): p = 1 (b): p = 2
 

(c): p = 3 (d): p = 4
 

(e): p = 5 

Figure 4.8: TGV solution on a fine mesh (2563 DOFs) for p = 1, 2, 3, 4, 5 depicting the 
vortex structure at t ∗ = 8 using iso-surfaces of Q-criterion Q = 1.5. 
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(a): p = 3, FR present study (b): p = 3, FR Bull and Jameson [70]
 

(c): p = 3, DGSEM Beck and Gassner [95] (d): p = 15, DGSEM Beck and Gassner [95] 

Figure 4.9: TGV solution on the fine mesh (2563 DOFs) for p = 3 depicting the vortex 
structure at t ∗ = 8 using iso-surfaces of Q-criterion Q = 1.5 compared to p = 3 solutions 
using FR-DG by Bull and Jameson [70] and p = 3, 15 DGSEM by Beck and Gassner [95]. 
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4.3.2 Comparison of LES and ILES 

In this section, implicit and explicit SGS modeling using the WALE model proposed by 
Nicoud and Ducros [83] is investigated within the FR framework at several polynomial 
orders on coarse to fine meshes, covering under-resolved to well-resolved cases. In the 
previous Section 4.3.1, solutions without any explicit modeling of the SGS turbulence 
agreed well with the reference spectral solution. Thus, this gives us some confidence in 
the method developed with the FR for implicit large-eddy simulations. However, the 
addition of an explicit SGS is examined for two reasons. We investigate firstly, the effect 
of additional dissipation introduced through the SGS model on the solution, and secondly, 
the effect of the SGS modeling on the stability of the numerical computations at high 
polynomial orders p = 5, 7 on coarse meshes. 

Figures 4.11a,b, 4.11c,d, and 4.11e,f compare the evolution of Ek, the directly computed 
dissipation rate t(Ek), and the vorticity-based dissipation rate t(E), respectively. The 
solutions are presented for ILES and LES computed using polynomial orders p = 1, 2, 3, 4, 5 
on a coarse mesh (643 DOFs). This 643 DOFs mesh represents a severely under-resolved 
case, where the effects of the SGS modeling should be highlighted. In general, the sub-
grid model solutions are similar to the cases without a sub-grid model. However, it seems 
that additional dissipation added from the SGS model slightly alters the solution for all 
polynomial orders. Recall that the simulations are initialized from large vortices (see 
Figure 4.2a), and mainly there are interactions between large vortical structures until t ∗ = 5 
to 7 (see Figure 4.3a and b). Despite that small-scale structures are not present, as the 
fully turbulent flow has not been developed yet, the sub-grid model produces dissipation, 
which adds to the overall dissipation. The careful reader may notice how the t(Ek) curves 
at p = 2, 3, 4, 5 coincide in the SGS model case until t ∗ = 5. This particular result may 
indicate that the dissipation of the sub-grid model dominates the numerical dissipation from 
the discretization using p = 2 or higher at the early stage of the simulation. Nevertheless, 
as soon as the flow develops into a fully turbulent flow at approximately t ∗ = 7, the sub-
grid model seems to work correctly and the kinetic energy dissipation rates become closer 
to the reference spectral solution as the polynomial order increases. 

However, since the eddy viscosity sub-grid models are inherently dissipative [85], it 
seems the turbulent structures are damped by the added dissipation, which results in 
lower levels of the enstrophy. Our finding are in agreement with those of DeBonis [97]. In 
his paper, DeBonis examined the effect of sub-grid models based on large-eddy simulation 
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employing the Smagorinsky [20] and dynamic Smagorinsky models [84], which are popular 
eddy viscosity sub-grid models. DeBonis reported that the sub-grid models add too much 
dissipation where the flow is not fully turbulent. They improve the solution near the 
peak dissipation rates, dissipate the resolved turbulent structures reducing the peak levels 
of vorticity, and increase the levels of numerical dissipation. Thus, it seems that the 
eddy viscosity sub-grid models are not the best choice for simulations over a long time 
interval, where an accurate representation of the decaying turbulence is needed. Figure 4.11 
shows the TGV solution at p = 3 for 643 and 2563 DOFs meshes computed with and 
without a sub-grid model. As expected, the effect of the sub-grid model is weaker at 
higher resolutions, when the resolved scales are much closer to the Kolmogorov scale. 

On the other hand, the added dissipation from the sub-grid model seems to stabilize 
the numerical computations—to some degree—at high polynomial orders. In the previous 
section, it was shown that instabilities appears at high polynomial orders p = 5, 7 in 
the solution, and they get stronger as the mesh resolution decreases. These instabilities 
reached a critical level for polynomial order p = 7, and they destabilized the solution 
on coarser meshes (643 and 1283 DOFs) at approximately t ∗ = 7. Simulations on the 
same meshes using a sub-grid model exhibit enhanced numerical stability. This can be 
seen in Figure 4.10, where t(Ek) and t(E) computed without sub-grid modeling on 643 

and 1283 DOFs meshes are compared to those computed with the sub-grid model. On 
a coarse mesh at p = 7, the effect of added dissipation on t(Ek) seems rather limited. 
Although, t(Ek) passes the dissipation peak at t ∗ = 9, oscillations appear near the peak. 
Later, at time t ∗ = 11, the simulation diverges as well. On the other hand, the numerical 
stability significantly improves on a medium coarse mesh at p = 7. The originally unstable 
simulation, which diverged at time t ∗ = 7, is now stable over the whole calculation period. 

Although we found that the TGV simulations without any explicitly modeled SGS tur­
bulence outperformed simulations with SGS modeling, the positive effect on the numerical 
stability seems promising. 

The eddy viscosity models have proven to be very useful for calculating turbulent flows 
in industrial settings (see [101] for reviews). In the next Chapter 5, we examine the 
performance of the FR scheme on a realistic aerospace application. In such setting, the 
WALE model produces comparable results to the case without any SGS model. 
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(a): ILES Ek (b): LES Ek 

(c): ILES t(Ek) (d): LES t(Ek) 

(e): ILES t(E) (f): LES t(E)
 

Figure 4.10: TGV solutions on a 643 DOFs meshes computed using ILES and LES.
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(a): Ek 

(b): t(Ek) 

(c): t(E) 

Figure 4.11: TGV solution at p = 3 on 643 and 2563 DOFs meshes computed using ILES 
and LES. 
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(a): ILES t(Ek), 643 DOFs (b): LES t(Ek), 643 DOFs 

(c): ILES t(E), 643 DOFs (d): LES t(E), 643 DOFs 

(e): ILES t(Ek), 1283 DOFs (f): LES t(Ek), 1283 DOFs 

(g): ILES t(E), 1283 DOFs (h): LES t(E), 1283 DOFs 

Figure 4.12: TGV solutions on a 1283 DOFs mesh computed using ILES and LES at p = 5 
and 7. 
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4.3.3 Calculation Cost 

Figure 4.13 plots a semilog of the calculation cost using p = 1, 2, 3, 4, 5 FR schemes on 
mesh sizes ranging from 643 to 2563 DOFs. The data are shown for the ILES setting. The 
calculation cost increases about 13–15% for LES with the SGS modeling. The vertical 
logarithmic axis shows the calculation cost expressed in work units for each iteration (for 
a definition, see Section 3.5), and the horizontal axis shows the length scale h defined as 

√
1/ 3 nDOFs with nDOFs the total number of DOFs per equation. To give a better idea of 
the calculation cost, the simulation takes 28 single-CPU hours and 17 single-CPU hours 
at p = 1 and p = 5 on a 643 mesh, respectively. The simulations at p = 1 and p = 5 on 
a 2563 DOFs mesh need 1795 single-CPU hours and 1067 single-CPU hours, respectively. 
We found a large difference of about 65% between p = 1 and p = 5 FR schemes. In 
other words, we obtained much more accurate results in a considerable shorter time at 
p = 5. Please note that we use a scientific code in this study. It seems it has a reasonable 
computational speed compared to other scientific codes. For example, Haga and Wang [98] 
presented the computational costs of the CPR code at the 1st HIOCFD workshop. Their 
FR code required 12.55 work units for each iteration on a fine mesh (2563 DOFs) at p = 3. 
We achieved of 12.68 work units for each iteration. 

Figure 4.13: ILES TGV: calculation cost.
 



Chapter 5
 

Flow Around the SD7003 Wing at 
Re = 60, 000 

In this chapter are presented and discussed results from numerical simulations of transi­
tional flow over a rectangular wing section with a Selig–Donovan low Reynolds number 
airfoil at α = 4◦, 8◦, and Re = 60, 000 using high-order flux reconstruction scheme. Simu­

lations are carried out with the degree p = 1, 2, 3 polynomials resulting in second-, third-, 
and fourth-order accurate FR schemes, respectively. 

The flow around an airfoil at this condition is characterized by a laminar-separation 
bubble (LSB) that was first described in detail by Gaster [55] and discussed in previous 
Section 2.3. An accurate prediction of transitional flows by the numerical simulation 
requires the scheme with low numerical viscosity and low dispersion errors. Recently, 
the attempt to capture the complex flow stated above by high-order accurate and high-
resolution schemes, together with the large-eddy simulation or the implicit large-eddy 
simulation without explicit sub-grid-scale eddy viscosity models, show remarkable successes 
to account for the transitional phenomena as well as the characteristic surface pressure and 
skin friction. However, the simulations are far from trivial and all employs state-of-the art 
numerical schemes and essential computer resources to capture transitional location, the 
turbulent statistics, and unsteady aerodynamic forces due to the fluctuation of separated 
shear layer. 

55
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For numerical simulations of the complex flow described above, a low Reynolds transi­
tional flow around an SD7003 wing was proposed in the category of three-dimensional and 
difficult problems in the 1st and 2nd international workshops on high-order CFD methods 
(HIOCFD) held in 2012 and 2013 [37]. In the 3rd HIOCFD held in January 2015, the 
SD7003 wing test case was removed from the database of HIOCFD test cases. Possible 
reasons for removing the SD7003 case are quantitative discrepancies in separation, reat­
tachment and transition locations, as well as in aerodynamic loads across the literature 
[102], the absence of DNS or additional experimental data for validation, and the fact 
that this case is quite computationally intensive, which makes it difficult to conduct grid 
resolution studies. Additional information about the 3rd HIOCFD can be found in the 
workshop website (https://www.grc.nasa.gov/hiocfd/). However, reports on solutions 
of this type of flow problem using methods achieving high-order accuracy are not only 
restricted to HIOFCD, but can be found in numerous other sources [[12]-[106]]. Literature 
sources which we will refer to later to are introduced in Section 5.1. 

5.1 Literature Review 

Catalano and Tognaccini [107] (2009) performed RANS simulations of the flow at Re = 
60,000 around the SD7003 airfoil. They showed that the laminar separation bubbles can 
be detected by a RANS method without any particular treatment of the laminar–turbulent 
transition. However, the unsatisfactory performance of the κ − ω SST turbulence model 
employed in some cases led Catalano and Tognaccini [108] (2010) to propose a modification 
of the turbulence model so that it would correctly reproduce the wall-law velocity for 
attached flows of low Reynolds numbers. This model is called κ − ω SST-LR. In [106] 
(2010), Catalano and Tognaccini performed RANS with turbulence models κ−ω SST, κ−ω 
SST-LR, and LES using a numerical code based on second-order central differences in the 
stream-wise and wall-normal directions, and Fourier collocations in the span-wise direction. 
Their main conclusions are that flows at low Reynolds number and the laminar separation 
bubbles can be simulated by the RANS approach, but as the angle of attack increases and 
a converged solution is no longer obtained, then time-accurate URANS simulations need 
to be performed. 

https://www.grc.nasa.gov/hiocfd/
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A high-order discontinuous Galerkin (DG) method for implicit large-eddy simulation 
was introduced by Uranga et al. [12, 17] (2009, 2011). Uranga has conducted two- and 
three-dimensional simulations at α = 4◦ and Re = 10,000, 22,000, and 60,000, using third-
and fourth-order DG schemes on unstructured tetrahedral meshes. Recently, ILES using 
the DG scheme have been conducted by Carton de Wiart and Hillewaert [11] (2012), Beck 
et al. [13] (2014), and Bassi et al. [103] (2015). Carton de Wiart and Hillewaert have 
conducted three-dimensional fourth-order accurate simulations at α = 4◦ on unstructured 
mixed meshes composed of hexahedra and wedges. Beck et al. conducted fourth- and 
eighth-order accurate simulations at α = 8◦ on unstructured hexahedral meshes. An over-
integration approach has been used to achieve a stable simulation for eighth-order accurate 
simulation. Bassi et al. have performed ILES using fouth- and fifth-order DG schemes at 
α = 8◦ . 

Galbraith and Visbal [14, 15] (2009, 2010) have conducted numerical simulations using 
the sixth-order accurate compact finite difference (CD) scheme with a high-order low-pass 
filter. They have used the overset grid approach and presented a comprehensive set of 
results, including various angles of attack and mesh resolutions. More recently, Garmann, 
Visbal, and Orkwis [16] (2012) conducted a comparative study of implicit and subgrid­
scale-based large-eddy simulations. In their simulations, the time-mean flow or statistical 
quantities have not been significantly affected by the addition of the dynamic Smagorinsky 
model. Garmann and Visbal [109] (2013) conducted additional simulations at α = 4◦, 8◦ 

on very fine meshes (up to 53.4 million DOFs) using CD scheme for the second HIOCFD. 

Boom and Zingg [104] (2013) and Weide, Giangaspero, and Svärd [105] (2015) con­
ducted ILES with high-order SBP-SAT (summation-by-parts spatial operators) finite dif­
ference (FD) schemes. Boom et al. have conducted simulations at α = 4◦ and 8◦ using 
second- and fourth-order accurate code, while Weide et al. have used fifth-order accurate 
code to perform simulations at α = 8◦ . 

Vermiere, Cagnone, and Nadarajah [63] (2013) presented some results for ILES using 
an FR scheme of turbulent and transitional flow over an SD7003 airfoil at α = 4◦ and Re = 
60,000. Preliminary fourth-order results showed good agreement with previous numerical 
and experimental studies. Skarolek and Miyaji [67] (2014) conducted three-dimensional 
simulations at α = 4◦ and 8◦ using third- and fourth-order FR schemes on two structured 
hexahedral meshes. The laminar separation bubble and the transition process was pre­
dicted quite well with remarkable agreement with the reference data across the literature. 
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In 2015, Vermeire and Nadarajah [110] presented an adaptive implicit/explicit (IMEX) 
approach for use with high-order unstructured schemes. The algorithm was validated on 
two-dimensional unsteady laminar flow over the SD7003 airfoil at α = 4◦ and Re = 10,000. 

Zhou and Wang [18] (2010) and Castonguay, Liang, and Jameson [19] (2010) have 
investigated the flow around the SD7003 wing using the spectral difference (SD) method. 
Both groups have conducted third- and fourth-order simulations at α = 4◦ . Castonguay 
et al. have conducted simulations at Re = 10,000 and 60,000. In the work of Zhou et al., 
the vortex breakdown process and the transition mechanism are discussed. 

5.2 Computational Methodology 

We follow guidelines for the computational set-up from the 1st and 2nd HIOCFD for 
numerical simulations presented in this chapter. 

5.2.1 Geometry and Mesh Generation 

The Selig–Donovan low Reynolds number airfoil has a maximum thickness of 8.5% and 
maximum camber of 1.45% at the 35% of the chord. The wing section is created from the 
extended planar airfoil geometry with spanwise length set to z/c = 0.2. The original sharp 
trailing edge (TE) has been rounded, with a very small circular arc of radius r/c ∼ 0.0004 
to facilitate grid generation near the trailing edge. The SD7003 airfoil and wing section 
is shown in Figure 5.1. As shown later, the flow at this Reynolds number transitions to 
turbulence, and since the flow has a clearly visible three-dimensional nature, one can expect 
that important flow features cannot be captured by a two-dimensional simulation. This is 
confirmed by comparing the two- and three-dimensional results obtained on a grid with the 
same resolution in a span-wise plane. Figure 5.2 plots instantaneous contours of vorticity 
for two- and three-dimensional simulations. A strong robust vortex travels downstream to a 
trailing edge in the two-dimensional simulation, and this means that transition phenomena 
are not captured correctly if the three-dimensional effects are neglected. 

Numerical simulations are conducted on two structured hexahedral O-grid domains. 
They differ in the number of SP in a circumferential direction on the upper surface of the 
wing. Mesh coordinates (ξ ×η×ζ) are oriented such that ξ follows the spanwise direction, η 
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(a) (b)
 

Figure 5.1: Selig–Donovan SD7003 low Reynolds number airfoil (a) and wing section (b).
 

(a): 2D (b): 3D 

Figure 5.2: Vorticity contours: comparison of 2D and 3D simulation. 

traverses clockwise around the airfoil, and ζ is normal to the surface as shown in Figure 5.4a. 
Dimensions of a coarse domain expressed in terms of the number of cells in spanwise, 
circumferential, and radial direction are 7 × 96 × 24. The mesh contains 16, 128 hexahedral 
cells, which give 129, 024 DOFs, 435, 456 DOFs, and 1, 032, 192 DOFs for p = 1, 2, 3, 
respectively. Finer domain consists of 32, 256 hexahedral cells with dimensions 7×192×24. 
This gives 258, 048 DOFs, 870, 912 DOFs, and 2, 064, 384 DOFs for p = 1, 2, 3, respectively. 
Approximately 75 percent of solution points is located in the upper part of the O-grid 
domain, i.e., there are more solution points on the upper surface of the wing than on 
the lower surface. The first wall-bounded base grid cell lies in the viscous sublayer with 
approximately y+ = 2.5. In Figure 5.3a and 5.4a is shown a base grid — defined as the 
mesh without added solution points— for coarse simulations. Figures 5.3b and 5.4b show 
the same grid with solutions points for p = 3. The computational domains are summarized 
in Table 5.1. 
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Table 5.1: Computational domains: present study
 

Approximate distance between two high-order nodes 
calculated as size of an element divided by p 

Case p mesh dimensions† DOFs (Δs/c)LE (Δs/c)T E (Δs/c)0.2 (Δs/c)0.6 (Δn/c)0.6 

1 129,024 0.0014 0.00022 0.018 0.022 0.00061 
Coarse 2 7 × 96 × 24 435,456 0.0007 0.00011 0.009 0.011 0.00031 

3 1,032,192 0.00046 0.000073 0.006 0.0073 0.00020 
1 258,048 0.0014 0.00022 0.012 0.010 0.00073 

Fine 2 7 × 192 × 24 870,912 0.0007 0.00011 0.006 0.005 0.00037 
3 2,064,384 0.00046 0.000073 0.004 0.0033 0.00024 

(Δs/c) - surface spacing in circumferential direction at leading edge (LE), trailing edge (TE) and x/c location 

(Δn/c) - normal spacing near the wall at x/c location 

x

y

z

(a): base grid (b): solution points p = 3 

Figure 5.3: Coarse mesh: (a) base grid with 16,128 hexahedral cells, (b) added solution 
points for p = 3 (1M DOFs) 
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(a): base grid
 

(b): p = 3 coarse [1M DOFs] 

Figure 5.4: Coarse mesh: (a) base grid with 16,128 hexahedral cells, (b) added solution 
points for p = 3 (1M DOFs) 
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5.2.2 Initial Conditions 

Simulations are carried out with a free-stream Mach number M∞ = 0.1, with a constant 
ratio of specific heats γ = 1.4, and the Prandtl number set to 0.72. Boundary conditions 
(BC) follow the recommendations given by the HIOCFD committee. A no-slip isothermal 
BC condition Twall/T = 1.002 is applied on the surface of the wing. A far-field boundary 
with a free-stream velocity condition is located approximately 100 chords away. The pe­
riodic boundary is along the spanwise (ξ) direction. Second- and third-order simulations 
are initiated from free-stream conditions. The fourth-order simulations are started from 
a developed state of third-order simulations to reduce the computational cost. Lagrange 
interpolation polynomials are used to obtain the initial fourth-order flow fields. Then, a 
continuous solution function Q(ξ, η, ζ) in a cell is constructed from N3 discrete solutions 
Qj,k,l as follows: 

N N NKKK 
Q(ξ, η, ζ) = {Pj,k,l(ξ, η, ζ)Qj,k,l}, (5.1) 

l=1 k=1 j=1 

where 

N
ξ − ξi

N
η − ηi

N
ζ − ζi N N N 

Pj,k,l(ξ, η, ζ) = · · . (5.2)
ξj − ξi ηk − ηi ζl − ζi

i=1,i=j i=1,i=k i=1,i=l 

5.2.3 Temporal Evolution 

The non-dimensional implicit time step is set to Δt ∗ = 0.0002 for all simulations. This 
time step is based on physical considerations from Kolmogorov theory. We have followed 
the conclusions of Choi and Moin in [111], where they demonstrated that turbulence fluctu­
ations could not be sustained in the DNS of a turbulent channel flow if the computational 
time step was near or larger than the Kolmogorov timescale. Therefore, the time step 
should be considerably lower than the timescale of the grid-resolved eddies for LES. In our 
study, a computational time step of 0.0002 is approximately 1 order lower than a relevant 
grid-resolved timescale. However, these assumptions are valid only for flows with high 
enough Reynolds number, according to Pope [34]. Therefore, we conducted a computa­

tional time-step study in Section 5.3.1 for validation. The time step set to Δt ∗ = 0.0002 
is also comparable to the literature [11, 13, 15, 19]. Selected simulations are recomputed 
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with the TVD-RK3 scheme to confirm the equivalent flow solutions and the amount of 
speed-up by the explicit and implicit method by our code. 

It is convenient to express the simulation time in so-called convective time units (CTUs). 
This is simply the time it takes for the flow to travel one chord length. A relation holds that 
1 non-dimensional time unit equals 1 CTU. Since, the second- and third-order simulations 
are initiated from free-stream conditions, a numerical adjustment from an unphysical state 
with large variations in forces occurred about five CTUs with slow stabilization of the forces 
during next 10 CTUs. Therefore, to let the flow stabilize for a reasonably long period of 
time, the second- and third-order simulations run for 40–50 CTUs with all quantities of 
interest averaged during the last 15 CTUs. At first, the fourth-order simulations, which 
are started from a developed state of third-order simulations, are allowed to stabilize, 
then data for time mean solutions are collected every iteration at least over 8 CTUs. 
Selected variables, such as velocity and mean-squared fluctuations of u-, v-, and w-velocity, 
are recorded every tenth iteration to give enough samples for computation of turbulence 
statistics. Time-mean flow fields are obtained as the arithmetic mean of solutions from 
about 40,000 iterations or more. This time-mean solution is averaged along the span-wise 
direction to obtain time and span-wise averaged solution at the end of each simulation. A 
small number of solutions that point in the span-wise direction makes the simple arithmetic 
mean inappropriate for span-wise averaging. Therefore, solutions at solution points are 
interpolated by a polynomial, and then span-wise average solutions are obtained by using 
a trapezoidal integration with very fine sampling. Note that, if not specified otherwise, the 
term “mean” is defined later in the text as for results averaged in time and space along 
the wingspan. 

Convergence histories of the CL and CD showed a very slight upward drift in the 
values as visible in Figure 5.5. It seems that longer simulation time is needed to obtain 
a statistically converged solution than time reported by Uranga [17]. This has also been 
previously reported by Carton de Wiart and Hillewaert [11]. Authors believe that an 
enormous increase in computational cost due to extension of the simulation time could 
easily outweigh benefits of a statistically converged solution. 
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Figure 5.5: Temporal evolution: lift and drag coefficients (α = 4◦, coarse domain) 

5.3 Results and Discussion 

In this chapter are presented and discussed results obtained from the current effort. In 
Section 5.3.1 are investigated several numerical parameters to limit numerical errors. Sec­
tion 5.3.2 contains results for simulations at α = 4◦ and Re = 60, 000. A long separation 
bubble is formed on the upper surface of the wing in mean time sense at this angle of 
attack. In Section 5.3.3 are presented results for simulations at α = 8◦ and Re = 60, 000. 
The short LSB is formed on the upper surface of the wing for this angle of attack. In 
Sections 5.3.4, 5.3.5, and 5.3.6 are presented effects of the polynomial order on solution, 
comparison of LES and ILES, and comparison of explicit and implicit time integration 
schemes, respectively. 
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5.3.1 Numerical Considerations 

Several numerical parameters are investigated at α = 8◦ and Re = 60, 000 to limit numeri­

cal errors. Third-order simulations with the coarse mesh are chosen due to a large number 
of simulations in an attempt to reduce computational demands. For purposes of compar­

ison, selected simulations are recomputed using the explicit third-order RK (TVD-RK3) 
scheme with a CFL number set to 0.45 and the time step size Δt ∗ ≈ 2 × 10−6 . Effects of 
the computational time step size on numerical solution are shown on mean surface skin 
friction coefficients (Cf ) in Figure 5.8a. The Cf coefficients obtained with the LU-SGS 
scheme for time step sizes lower than Δt ∗ = 3 × 10−4 agree well compared to the explicit 
RK3. It seems that a transition to turbulence and, consequently, reattachment occur later 
in simulations with disproportionately large time steps. 

The reference values for the Jacobian recalculation and number of sub-iterations used 
in the LU-SGS scheme (see Section 3.3.1) need to be selected. The Jacobian matrix is 
recalculated every 40 iterations. This value is based on the work of Sun et al. [78]. Sun et 
al. found it unnecessary to recompute the matrix every iteration, as they did not observed 
any significant effects on the convergence rate of the steady state problems with matrix 
recomputed every 40−100 iterations. Figure 5.6 shows that the convergence rate of the 
inner solver is not affected due to the worse approximation of the Jacobian matrix at higher 
recalculation intervals. Computational savings from the Jacobian freezing approach can be 
expressed as follows. In our code, if we assume the CPU time for one iteration is 1 U, then 
the cost for the matrix update is about 5 U. It takes 45 U for 40 iterations with one matrix 
update, while it takes 50 U for 40 iterations with two matrix updates. Figure 5.8b plots 
three skin friction distributions for the Jacobian matrix recalculation every 20, 40, and 100 
iterations. The Cf distributions agree very well between the three simulations; thus, it 
seems that the recalculation every 40 iterations is adequate for the given flow conditions. 

Additional parameter is number of sub-iterations. We used fixed number of sub-
iterations set to 10 to sweep the unsteady residual, which needs to drop sufficiently within 
sub-iterations for unsteady problems. Figure 5.7a is a plot of the residual drop averaged 
over 1 CTU for several sub-iteration levels. The sweeping efficiency significantly decreases 
at higher sub-iterations. Moreover, it seems that the unsteady residual tends to oscillate 
at higher sub-iterations as shown in Figure 5.7b. Therefore, it seems that for unsteady 
flows to drive the unsteady residual every iteration to machine zero could be quite compu­

tationally exhaustive. 
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Figure 5.6: Unsteady residuals after 10 inner-iterations for the Jacobian 
matrix recalculated every 10 and 40 iterations. 

With 10 sub-iterations as used in this study, the unsteady residual decreases by 3 orders 
or more. This seems to be a good compromise between accuracy and efficiency, because 
between the number of sub-iterations and computational cost is an almost linear rela­
tionship. Comparison of skin friction distributions for simulations with 5, 10, and 20 
sub-iterations is shown in Figure 5.8d. The skin friction distributions agree well between 
the simulations with 10 and 20 sub-iterations; on the other hand, 5 sub-iterations lead 
to an under-resolved solution. Figure 5.8f compares the first- and second-order accurate-
in-time LU-SGS schemes. The solutions agree well: the skin friction gradient is sharper 
and reattachment occurs earlier upstream with the second-order accurate LU-SGS scheme. 
The second-order accurate LU-SGS scheme is used for all simulations, since the CPU cost 
is only about 1.5% higher than the cost with the first-order accurate LU-SGS scheme. The 
increase in CPU time of only about 1.5% makes an implicit solver of higher orders promis­

ing, e.g., third- or fourth-order accurate-in-time. This was previously shown by Bassi et 
al. [103]. They reported that higher-order time schemes are more efficient than lower-order 
ones if the required accuracy is high and they seem to be more suitable for complex and 
demanding simulations of turbulent flows. However, we have not implemented an implicit 
solver for higher orders yet. 

Figure 5.8c plots four averaging lengths: 2.5, 5, 10, and 20 CTUs. The Cf distributions 
are very similar for averaging longer than 5 CTUs. It seems that the averaging interval over 
8–15 CTUs is sufficient, representing a good compromise between accuracy and efficiency. 
The Cf distributions obtained for the three meshes, i.e., meshes with two times finer radial, 



67 5.3. Results and Discussion 

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  5  10  15  20  25  30  35  40

av
er

ag
e 

dr
op

 o
f u

ns
te

ad
y 

re
si

du
al

number of sub-iterations

∆ures

1.00e-06

1.00e-05

1.00e-04

 26  26.2  26.4  26.6  26.8  27

un
st

ea
dy

 r
es

id
ua

l a
fte

r 
sw

ee
pi

ng

convective time, ct

sub-iterations = 10
sub-iterations = 20

(a) (b) 

Figure 5.7: a) Average drop (Δ u-res = u-resinit - u-resfinal) of unsteady residual as a 
function of sub-iterations (averaged over 1 CTU), b) unsteady residuals after 10 or 20 
sub-iterations. 

spanwise direction, and reference coarse mesh, agree fairly well—with some discrepancies— 
along the chord, as shown in Figure 5.8e. Simulations conducted by the authors showed 
that the streamwise resolution on the upper surface of the wing is of prime importance. 
The authors evaluated the effects of the refined radial and spanwise directions as relatively 
minor. The principal reason for this omission is a lack of computational power. 

The order, the grid size, the number of degrees of freedom, and the computational 
costs expressed in work units needed for 1 convective time are summarized in Table 5.2. 
Compared with explicit time stepping, the computation time for LU-SGS is reduced by a 
factor of about 5, while producing comparable results. 

Table 5.2: Computational cost of coarse p = 2, 3 and fine p = 3 simulations. 

Coarse Fine 
solution order p 2 solution order p 3 solution order p 3 

Scheme RK3 LU-SGS RK3 LU-SGS RK3 LU-SGS 
Dimension, cells 7 × 96 × 24 7 × 96 × 24 7 × 192 × 24 
DOFs 435,456 1,032,192 2,064,384 
Timestep, t ∗ 2.52 × 10−6 2 × 10−4 1.89 × 10−6 2 × 10−4 1.87 × 10−6 2 × 10−4 

CFL 0.45 35.71 0.45 47.61 0.45 48 
Memory GB 0.29 4.7 0.9 14.6 1.8 29.3 
Work units for 1 CTU 1.12 × 105 2.18 × 104 3.77 × 105 7.65 × 104 7.71 × 105 1.62 × 105 

LU-SGS speedup 5.14 times 4.93 times 4.76 times 
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Figure 5.8: Effects of the computational time step size (a), length of time averaging (b), 
radial or spanwise resolution (c), Jacobian matrix recalculation interval (d), number of 
sub-iterations (e), temporal order of accuracy (f) on numerical solution. Obtained from 
p = 2 coarse simulation at α = 8◦ . 
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5.3.2 Reynolds Number = 60,000, α = 4◦ 

This chapter discusses the results at α = 4◦ and Reynolds number = 60,000 obtained from 
the work described in the previous sections. 

A laminar separation occurs at approximately 20% of the chord length for α = 4◦ . 
Consequently, the flow reattaches at approximately 66% of the chord. Figure 5.9 shows 
mean streamwise velocity contours for α = 4◦ . A LSB that is relatively lengthy in mean 
time is formed on the suction side of the wing for this angle of attack. 

(a): u-velocity (b): pressure 

Figure 5.9: Mean u-velocity and pressure contours from fine p = 3 simulations at α = 4◦ . 

The lift coefficient (CL), drag coefficient (CD), separation (xsep), and reattachment (xr) 
locations are compared in Table 5.3 with those reported previously in the literature. The 
values for separation xsep and reattachment xr are obtained from observing the velocity 
profiles in the boundary layer. At α = 4◦, the results are compared with previous numerical 
studies that used CD [15, 109], FD [104], DG [11, 17], and SD [18, 19] high-order schemes, 
and with several experiments [112, 113, 114, 115]. Table 5.3 also shows DOFs. They usually 
range from 1 to 53 million in the literature for this angle of attack, with most studies having 
around 4–6 million DOFs. Our finest mesh consists of 2 million solution points, i.e., DOFs. 
This value is similar to those of studies by Uranga et al. [12], Castonguay et al. [19], Bassi 
et al. [103], and others. The mean CL and CD coefficients converge to CL = 0.6 and 
CD = 0.022 for α = 4◦ . xsep and xr for the fourth-order (p = 3) simulation are predicted 
to be 0.198 and 0.660 x/c, respectively. These results are consistent with the literature. 

Figure 5.10 shows mean Cp and Cf distributions for the degree p = 1, 2, 3. The Cf 

profiles are shown only for the suction side of the wing. The pressure gradient is not steep 
in the transition region, and transition into turbulence occurs further upstream for the 
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Table 5.3: Mean results: present study and literature (α = 4◦). 

CL CD xsep/c xr /c Scheme DOFs 
[–] [–] [–] [–] order/type in millions 

Author 
Garmann and Visbal [109] very fine 0.599 0.0215 0.207 0.649 O(6) ILES CD 53.4 
Galbraith and Visbal [15] overset 0.59 0.021 0.23 0.65 O(6) ILES CD 5.7 
Galbraith and Visbal [14] fine overset — — 0.20 0.66 O(6) ILES CD 6.6 
Boom and Zingg [104] 0.60 0.022 0.21 0.64 O(4) ILES FD SBP/SAT 4.9 
Uranga, Persson and Drela [12] 0.60 0.022 0.24 0.6 O(4) ILES DG 1 
Hillewaert and Carton de Wiart [11] 0.60 0.022 0.21 0.66 O(4) ILES DG — 
Zhou and Wang [18] — — 0.227 0.685 O(4) ILES SD 5 
Castonguay, Liang and Jameson [19] — — 0.23 0.65 O(4) ILES SD 3.1 
Catalano and Tognaccini [106] 0.62 0.023 0.021 0.64 O(2) FD & dyn. Smag. 8.86 
Experiment 
Selig, Donovan and Fraser [112] ≈ 0.58 ≈ 0.021 — — — — 
Selig, Guglielmo and et al. [113] ≈ 0.60 ≈ 0.0165 — — — — 
Radespiel and et al. (TU–BS) [114] — — 0.3 0.62 — — 
Ol, McAuliffe and et al. (HFWT) [115] — — 0.18 0.58 — — 
Present study 
Coarse p = 1 0.571 0.0212 0.247 0.713 O(2) ILES FR 0.13 
Coarse p = 2 0.584 0.0198 0.241 0.622 O(3) ILES FR 0.4 
Coarse p = 3 0.595 0.0222 0.228 0.654 O(4) ILES FR 1 
Fine p = 2 0.604 0.0215 0.204 0.661 O(3) ILES FR 0.9 
Fine p = 3 0.599 0.0223 0.198 0.660 O(4) ILES FR 2 

second-order (p = 1) simulation on the coarse mesh. The second-order accurate simulation 
(p = 1) fails in recovering Cf after the reattachment at 0.71 x/c. The transition to 
turbulence is suppressed with stronger vortical structures traveling further downstream. 
This has a negative effect on the flow downstream and leads to misprediction of the Cf in 
the turbulent regime. We conclude that the coarse mesh with 129, 024 DOFs is obviously 
insufficient for the second-order (p = 1) simulations. 

The third-order (p = 2) simulation on the coarse mesh with 435, 456 DOFs shows an 
improvement. The coarse p = 3 and p = 2, 3 fine simulations have quite similar Cp and Cf 

profiles. The pressure gradient is steeper in the transition region, and the Cf profile seems 
to be successfully recovered in the turbulent regime. Noticeable differences between the 
coarse p = 3 and p = 2, 3 fine simulations can be observed in the separation region from 
0.1 to 0.3 x/c and in the turbulent region from 0.6 to 1 x/c. An increase in the number of 
solution points in a streamwise direction (fine mesh) caused that separation occurs earlier, 
while reattachment later downstream for p = 2, 3 simulations. 
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Figure 5.10: Mean surface Cp and Cf distributions at α = 4◦ . 

Figure 5.11 plots Cp and Cf distributions from the fourth-order (p = 3) simulations for 
α = 4◦ compared with the literature [14, 15, 16, 102, 109, 116]. The results for α = 4◦ 

show good agreement with the literature, despite the lower resolution used in our study. 
Differences between the coarse and fine simulations seem to be caused by the insufficient 
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streamwise resolution of the coarse domain. This trend is similar to Galbraith’s results 
on the “overset,” and streamwise refined “fine overset” meshes. It seems that results for 
α = 4◦ agree reasonably well with the literature. 
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Figure 5.11: Mean surface Cp and Cf compared to the literature values at α = 4◦ . 
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Figure 5.12a,b compares the mean boundary layer (BL) velocity profiles and mean-

squared fluctuations of u-velocity with the literature [102, 109, 116] for α = 4◦ . It seems 
that BL profiles are in reasonable agreement with the literature with respect to coarser 
domains used in this study. 
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Figure 5.12: Boundary layer profiles of u-velocity and mean-squared fluctuations of u-
velocity (u 2) at α = 4◦ 

Figure 5.13 shows the three-dimensional vortical structures visualized by the iso-surfaces 
of the Q-criterion [100], colored with the local value of the Mach number for α = 4◦ . In 
this study, the predicted vortical structures seem to be in agreement with those in the 
literature, although long hairpin-like vortices are not clearly visible, as they are in the 
literature [15, 19, 109]. The low-order (p = 1) solution on the coarse mesh shows that the 
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vortex disintegration is suppressed, with the robust vortical structures appearing further 
downstream. A similar trend is visible between the third-order (p = 2) and fourth-order 
accurate (p = 3) simulations with comparable DOFs, as shown by Figures 5.13b and 5.13c. 
Different performance on meshes with similar resolution illustrates the positive effect of a 
higher polynomial degree on the solution. The excessive dissipation is associated with the 
lower polynomial degrees. Section 4.3.1 discussed the effect of higher polynomial degrees 
on the under-resolved turbulence in simulations of a compressible Taylor–Green vortex. 
The visualized structures indicate that the laminar-turbulent transition in a laminar sep­
aration bubble is dominated by vortex formation and the breakup process. The span-wise 
vortices—formed by the roll-up process in the shear layer—are recognizable after 50% of 
the chord. Immediately downstream of their formation, the vortices become distorted in 
the stream-wise direction and quickly disintegrate into small-scale turbulence. 

(a): p = 3 fine [2M DOFs]
 

(b): p = 3 coarse [1M DOFs] (c): p = 2 fine [0.9M DOFs]
 

(d): p = 2 coarse [0.4M DOFs] (e): p = 1 coarse [0.13M DOFs] (Q 
= 200) 

Figure 5.13: Instantaneous iso-surfaces of Q-criterion colored with the Mach number (α = 
4◦ , Q = 500). 
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Figure 5.14 shows a sequence of six consecutive instantaneous snapshots of the unsteady 
flow for α = 4◦ with corresponding Cp and Cf distributions. This sequence illustrates the 
unsteadiness of the flow, as well as that span-wise vortices are periodically shed from the 
bubble. 
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Figure 5.14: Instantaneous iso-surfaces of Q-criterion colored with the Mach number (top) 
with corresponding Cp and Cf distributions (α = 4◦ , Q = 500, p = 3 fine). 
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Better insight on the laminar–turbulent transition provides Figure 5.16, which plots 
contours of the turbulent kinetic energy, 21 

TKE = u 2 + v 2 + w 2 ,
2 

and Reynolds stress component, 
u v 

τ = ,xy U2 
∞ 

for α = 4◦ and p = 1, 2, 3 simulations on coarse and fine meshes. Figure 5.15 shows con­
tours from numerical simulation [15] and experiments [114, 115]. Contours are taken from 
Galbraith et al. [15] for comparison. In Figure 5.16, coordinates x , y are two-dimensional 
x, y coordinates rotated about the origin (0, 0) by an angle α to match the style used 
by Galbraith in Figure 5.15. Simulations p = 1, 2 on a coarse domain are clearly under-
resolved due to the insufficient resolution. This is in agreement with previous observations 
from Figure 5.10, where Cp and Cf differ from other results in the critical region after 50% 
chord length. Simulations p = 3 on coarse and fine domains show significant improvement. 
The shape, extent, and magnitude seem to agree to a reasonable degree with those in the 
literature. 

(a): ILES Galbraith et al. [15] (b): Exp. TU-BS [114]
 

(c): Exp. HFWT [115] 

Figure 5.15: Reynolds stress (u v ) contours at α = 4◦ taken from Galbraith et al. for the 
purpose of comparison. 
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(a): p = 1 coarse [0.13M DOFs] (b): p = 1 coarse [0.13M DOFs]
 

(c): p = 2 coarse [0.4M DOFs] (d): p = 2 coarse [0.4M DOFs]
 

(e): p = 3 coarse [1M DOFs] (f): p = 3 coarse [1M DOFs]
 

(g): p = 3 fine [2M DOFs] (h): p = 3 fine [2M DOFs] 

Figure 5.16: Reynolds stress (u v ) and TKE contours at α = 4◦ . Results are for ILES, 
p = 1, 2, 3 simulations. 
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To obtain greater insight into the LSB dynamics, e.g., the shedding frequency of the 
span-wise vortices, the frequency spectra are plotted for the fourth-order (p = 3) simula­

tion on the fine mesh. Figure 5.17 shows the frequency spectra of the stream-wise velocity 
component at 0.1, 0.5, and 0.95 x/c stations for α = 4◦ . Recorded u-velocities from the 
three stations on the suction side of the wing are transformed into the frequency domain 
using the Fourier transform. Velocity probes are positioned at the mid-span at approxi­
mately half the local time-mean boundary layer height. The cutoff frequency associated 
with the size corresponding to the high-order nodes is shown by a vertical line. The uni­
form distribution of fluctuations in the solution indicates that energy is not accumulated 
at certain wavelengths. At α = 4◦ , the breakdown of the shear layer occurs at about 
0.5 x/c and the spectrum at x/c = 0.5 shows distinct peak frequencies of f∗ = 5.13, 7.69, 
and 9.49. It seems that these frequencies are most likely associated with vortex shedding. 
Zhou and Wang [18] suggest that there is not a single vortex shedding frequency but more 
likely there is a continuous frequency band 4 ≤ f∗ ≤ 9. This study’s results agree also 
reasonably well with the numerical study of Galbraith et al. [15], where vortex shedding 
frequencies of f ∗ = 5.8, 6.4, 7.3, and 9.2 were found. 
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Figure 5.17: Frequency spectra of u-velocity. Three probes were placed in the BL on the 
upper surface of the wing. Obtained from p = 3 fine simulation at α = 4◦ . 
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Figure 5.18: Continue of Figure 5.17: Frequency spectra of u-velocity at x/c = 0.95.
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5.3.3 Reynolds Number = 60,000, α = 8◦ 

In this chapter, the results at α = 8◦ and Reynolds number = 60,000 are presented and 
discussed. 

A laminar separation occurs almost immediately at approximately 3% of the chord 
length for α = 8◦ . The flow reattaches at approximately 25% of the chord. Figure 5.19 
shows mean streamwise velocity contours for α = 8◦ . The LSB shortens in length and 
moves toward the leading edge (LE) for higher α, and turbulent flow is so over the most of 
the upper surface. The mean lift coefficient (CL), drag coefficient (CD), separation (xsep), 

(a): u-velocity (b): pressure 

Figure 5.19: Mean u-velocity and pressure contours from fine p = 3 simulations at α = 8◦ . 

and reattachment (xr) locations are compared in Table 5.4 with those reported previously 
in the literature. At α = 8◦, the results are compared with numerical results reported by 
various authors using DG [13, 103], FD [104, 105, 106], and CD [15, 16, 109] high-order 
schemes, and with two additional experiments [112, 113]. Table 5.4 also shows DOFs. 
At α = 8◦, the DOFs range from 4 to 53 million in the literature. Our finest domain 
with 2 million DOFs is coarser—in terms of the number of DOFs—than those of most 
previous studies for this angle of attack. Taking a closer look at the results for α = 8◦ in 
Table 5.4, it seems that there is no general agreement across the results, as there is for 
α = 4◦ . Therefore, it seems that the α = 8◦ case is considerably more challenging, most 
likely because the turbulent flow occurs over almost the whole length of the suction side 
of the wing. The mean CL and CD coefficients for the fourth-order (p = 3) fine simulation 
at α = 8◦ are 0.924 and 0.0433, respectively. Separation and reattachment occur at 0.030 
and 0.297 x/c, respectively. These values agree reasonably well with the results from 
other authors. However, the noticeable discrepancies in the results of the experiments and 
numerical simulations require further explanation. 
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Table 5.4: Mean results: present study and literature (α = 8◦). 

CL CD xsep/c xr /c Scheme DOFs 
[–] [–] [–] [–] order/type in millions 

Author 
Garmann and Visbal [109] very fine 0.917 0.045 0.031 0.303 O(6) ILES CD 53.4 
Garmann, Visbal and Orkwis [16] fine 0.969 0.039 0.023 0.259 O(6) ILES CD 12.5 
Garmann, Visbal and Orkwis [16] coarse 0.970 0.044 0.023 0.284 O(6) ILES CD 9.1 
Galbraith and Visbal [15] overset 0.92 0.043 0.040 0.280 O(6) ILES CD 5.7 
Boom and Zingg [104] 0.968 0.034 0.037 0.2 O(4) ILES FD 4.9 
Catalano and Tognaccini [106] 0.95 0.044 0.033 0.29 O(2) FD & dyn. Smag. 8.86 
Beck, Bolemann and et al. [13] 0.923 0.045 0.027 0.310 O(4) ILES DG-SEM 4.26 
Weide, Giangaspero and Svärd [105] 0.918 0.045 0.034 0.308 O(5) ILES FD 4 
Bassi, Botti and et al. [103] 0.953 0.045 0.027 0.294 O(5) ILES DG 0.7 
Experiment 
Selig, Donovan and Fraser [112] ≈ 0.89 ≈ 0.048 — — —
 
Selig, Guglielmo and et al. [113] ≈ 0.92 ≈ 0.029 — — —
 
Present study 
Coarse p = 1 0.940 0.0466 0.061 0.371 O(2) ILES FR 0.13 
Coarse p = 2 0.962 0.0418 0.026 0.283 O(3) ILES FR 0.4 
Coarse p = 3 0.934 0.0385 0.030 0.257 O(4) ILES FR 1 
Fine p = 2 0.937 0.0408 0.030 0.264 O(3) ILES FR 0.9 
Fine p = 3 0.924 0.0433 0.030 0.297 O(4) ILES FR 2 

Surprisingly, Selig’s [113] experiment from 1995 shows a considerably lower drag coeffi­

cient than those measured in 1989 [112] or those predicted by numerical simulations. Selig 
et al. reported that the measured mean aerodynamic forces differed widely in each exper­
imental run for Re = 60,000. Moreover, experimental data collected from four span-wise 
locations differed radically by about ±20% CD from each other, where the final coefficient 
is an average value from the four span-wise locations. Selig et al. reported difficulties for all 
airfoils tested at Re = 60,000 [112, 113]. One possible explanation is that the separated flow 
at a given low Reynolds number is highly sensitive to the free-stream turbulence. Due to its 
nature, experiments were conducted with some measurable turbulence intensity, whereas 
implicit large-eddy simulations were performed with zero turbulence intensity. This could 
explain some of the discrepancies found between experiments and numerical simulations. 
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Figure 5.20 shows mean Cp and Cf distributions for the degree p = 1, 2, 3. The Cf pro­

files are shown only for the suction side of the wing. The second-order accurate simulation 
(p = 1) fails in recovering Cf after the reattachment. This is a similar result as for α = 4◦ . 
The third-order (p = 2) simulation on the coarse mesh with 435, 456 DOFs shows again 
an improvement compared to p = 1 simulation. At α = 8◦, differences between p = 2, 3 
coarse, p = 2 fine, and p = 3 fine simulations are also visible as at α = 4◦ . It seems that 
the fine p = 3 simulation has some patterns in common for both angles of attack. The 
reattachment is predicted later, and simultaneously the Cf peak after the reattachment 
seems to be lower for the fine p = 3 simulation compared to the coarse p = 3 simulation. 
This is more pronounced at 8◦ than at 4◦ . 

Figure 5.21 show Cp and Cf distributions from the fourth-order (p = 3) simulation 
for α = 8◦, compared with the literature [13, 16, 103, 105, 109, 117]. At α = 8◦, the 
Cp distribution for the fourth-order (p = 3) simulation on the coarse mesh is reasonably 
close to the distribution found by Garmann et al. [16] until the point where the flow 
undergoes the transition to turbulence. The early transition is shifting the drop of the Cf 

upstream. The transition on the fine mesh is delayed. Moreover, the flat pressure plateau 
is lower for the finest (p = 3) simulation. It is not clear why pressure plateaus differ across 
the literature, or in this study’s results. This suggests the need for accurate and reliable 
DNS reference database to evaluate the quality of the LES results. Overall, however, it 
seems that results for α = 8◦ agree reasonably well with the literature, as our results lie 
somewhere between the previously published results. 

Figure 5.22 shows the three-dimensional vortical structures visualized by the iso-surfaces 
of Q-criterion [100], colored with the local value of the Mach number for α = 8◦ . The pre­
dicted vortical structures seem to be in agreement with the literature. Similar to α = 4◦ , 
long, hairpin-like vortices are not clearly visible, as they are in the literature [16, 103]. At 
α = 8◦, Kelvin–Helmholtz instabilities are clearly visible near the leading edge, with the 
spanwise vortices recognizable after 10% of the chord. The vortical structures at α = 4◦ 

are discussed in Section 5.3.2. 
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Figure 5.20: Mean surface Cp and Cf distributions at α = 8◦ . 
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Figure 5.21: Mean surface Cp and Cf compared to the literature values at α = 8◦ . 
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(a): p = 3 fine [2M DOFs]
 

(b): p = 3 coarse [1M DOFs]
 

(c): p = 2 fine [0.9M DOFs] (d): p = 2 coarse [0.4M DOFs]
 

(e): p = 1 coarse [0.13M DOFs] 

Figure 5.22: Instantaneous iso-surfaces of the Q-criterion colored with the Mach number 
(α = 8◦ , Q = 500, only p = 1 Q = 200). 
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The frequency spectra are obtained for the fourth-order (p = 3) simulation on the 
fine mesh for α = 8◦ in the same manner as at α = 4◦ . The procedure is described in 
the previous Section 5.3.2. At α = 8◦, the breakdown of the shear layer occurs at about 
0.15 x/c, and the spectrum at x/c = 0.1 shows a distinguishable peak frequency f ∗ = 22.5. 
This indicates that vortex shedding is faster at a higher angle of attack. A corresponding 
frequency is not recognizable further downstream at stations 0.5 and 0.95 x/c. 
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Figure 5.23: Frequency spectra of u-velocity. Three probes were placed in the BL on the 
upper surface of the wing. Obtained from p = 3 fine simulation at α = 8◦ . 
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Figures 5.24a and 5.24b compare the mean boundary layer velocity profiles and mean-

squared fluctuations of the u-velocity with those in the literature [16, 13, 109, 117] for 
α = 8◦ . On the coarse grid, there are slightly overpredicted velocities along the whole 
upper surface. Also, the mean-squared fluctuations of the u-velocity at x/c = 0.2 deviate 
from the profiles found in the literature. However, the result from the p = 3 fine simulation 
shows an improvement towards higher mesh resolutions. It seems the BL profiles are in 
very reasonable agreement with those in the literature with respect to the maximum 2 
million DOFs used in our study. 
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Figure 5.24: Boundary layer profiles of u-velocity and mean-squared fluctuations of u-
velocity (u 2) at α = 8◦ 
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Figures 5.25 and 5.26 plot contours of the turbulent kinetic energy and Reynolds stress 
component τxy for α = 8◦ and p = 1, 2, 3 simulations on coarse and fine meshes. Figure 5.25 
shows contours from numerical simulations conducted by Galbraith and Visbal [15] and 
Garmann, Visbal and Orkwis [16] for comparison. In Figure 5.26, coordinates x , y are 
two-dimensional x, y coordinates rotated about the origin (0, 0) by an angle α to match 
the style used by Galbraith in Figure 5.25. The contours in Figure 5.26 show a continuous 
improvement towards higher DOFs, which is natural and can be expected. The p = 3 
simulations on coarse and fine domains agree to a reasonable degree with respect to the 
shape and magnitude to each other. However, the p = 3 fine contours reveal that the 
core is predicted slightly downstream compared to p = 3 coarse results. This is not so 
obvious, but still visible between the fine and coarse domains at α = 4◦ in Figure 5.16. 
The fine domain has double the resolution in the stream-wise direction; thus, it seems that 
the laminar–turbulent transition and flow reattachment are quite sensitive to the stream-

wise resolution. Overall, however, the contours seem to agree to a reasonable degree with 
respect to the shape, magnitude, and extent with those in the literature. 

(a): u v /U2 Galbraith et al. [14] (b): TKE Garmann et al. [16] 

Figure 5.25: Reynolds stress (u v ) contours at α = 8◦ taken from Galbraith et al. and 
Garmann et al. for the purpose of comparison. 
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(a): p = 1 coarse [0.13M DOFs] (b): p = 1 coarse [0.13M DOFs]
 

(c): p = 2 coarse [0.4M DOFs] (d): p = 2 coarse [0.4M DOFs]
 

(e): p = 3 coarse [1M DOFs] (f): p = 3 coarse [1M DOFs]
 

(g): p = 3 fine [2M DOFs] (h): p = 3 fine [2M DOFs] 

Figure 5.26: Reynolds stress (u v ) contours and turbulent kinetic energy (TKE) at α = 
8◦ . Results are for ILES, p = 1, 2, 3 simulations. 
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5.3.4 Effect of the Polynomial Order on Solution, α = 4◦ 

Additional p = 1, 2, 3 simulations were conducted on meshes with a comparable distri­
bution and resolution of the solution points in the computational domain. This section 
discusses the effect of the polynomial order on the solution. Section 5.3.5 compares ILES 
with traditional subgrid-scale LES, and Section 5.3.6 compares implicit with explicit time 
stepping. The resolution corresponding to 1 million DOFs is chosen for acceptable re­
sults with a reasonable computational cost. Additional simulations were conducted only 
at α = 4◦ due to the larger difference between the coarse and fine simulations at α = 8◦ . 

Figure 5.27 plots mean Cp and Cf distributions for degree p = 1, 2, 3. Figure 5.28 shows 
instantaneous iso-surfaces of the Q-criterion (Q = 500) colored with the Mach number. 
Figure 5.29 plots contours of the turbulent kinetic energy and Reynolds stress compo­

nent τxy. These results illustrate the positive effect of a higher polynomial degree on the 
under-resolved turbulence as excessive dissipation is associated with the lower polynomial 
degrees. The second-order (p = 1) simulation shows poor performance. The separation 
and transition point seem to be predicted well, but the p = 1 simulation fails in predicting 
the turbulent reattachment. It seems that as the flow enters into turbulent regime, the 
two- and three-dimensional instabilities are smoothed out due to the excessive dissipation 
of the scheme. The breakdown of the span-wise vortex is suppressed, and strong vortices 
are present further downstream as visible in Figure 5.28c. On the other hand, the third-
order (p = 2) and fourth-order (p = 3) schemes show very similar results. The shrinking 
difference between the Cf distributions of the p = 2 and p = 3 simulations in Figure 5.27b 
indicates the solution tends to converge quickly to some specific value with higher polyno­
mial orders. Despite our effort to present p = 4 (fifth-order) simulations for comparison, 
the p = 4 simulations are numerically unstable, which is in accordance with the observed 
instability of higher-order polynomials for the TGV simulations in Section 4.3. 

Figure 5.12a,b compares the mean boundary layer (BL) velocity profiles and mean-

squared fluctuations of u-velocity with the literature [102, 109, 116]. The BL profiles are 
obtained from p = 1, 2, 3 simulations on grid with 1 million DOFs at α = 4◦ . 
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Figure 5.27: Effect of the polynomial order on Cp and Cf . Meshes have comparable 
distribution and resolution of the SP. Results are for α = 4◦ , 1M DOFs, p = 1, 2, 3 
simulations. 

(a): p = 3 [1M DOFs]
 

(b): p = 2 [1M DOFs] (c): p = 1 [1M DOFs] 

Figure 5.28: Instantaneous iso-surfaces of Q-criterion (Q = 500) colored with the Mach 
number. Results are for α = 4◦, 1M DOFs, p = 1, 2, 3 simulations. 
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(a): ILES p = 1 [1M DOFs] (b): ILES p = 1 [1M DOFs]
 

(c): ILES p = 2 [1M DOFs] (d): ILES p = 2 [1M DOFs]
 

(e): ILES p = 3 [1M DOFs] (f): ILES p = 3 [1M DOFs] 

Figure 5.29: Reynolds stress (u v ) contours and turbulent kinetic energy (TKE) at α = 
4◦ . Results are for ILES, 1M DOFs, p = 1, 2, 3 simulations. Coordinates x , y are 2D x, y 
coordinates rotated about the origin (0, 0) by an angle α. Compare with LES in Figure 
5.33. 
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Figure 5.30: Boundary layer profiles of u-velocity and mean-squared fluctuations of u-
velocity (u 2) obtained from p = 1, 2, 3 simulations at α = 4◦ . 
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5.3.5 Comparison of LES and ILES, α = 4◦ 

Since there is only a limited insight into how well the intrinsic numerical dissipation— 
functioning as an implicit SGS model—in FR behaves for a wider spectrum of flows, the 
effect of explicit modeling of unresolved scales on the solution is investigated by the LES 
technique based on an explicit SGS model. The employed SGS model is the wall-adapting 
local eddy-viscosity (WALE) model as described earlier in Section 3.4. Simulations in the 
ILES and LES frameworks are conducted for p = 1, 2, 3 polynomial orders at α = 4◦ with 
the identical computational set-up for LES and ILES, as in Section 5.3.4. 

Figure 5.31 plots mean Cp and Cf distributions for degree p = 1, 2, 3. Figure 5.32 shows 
instantaneous iso-surfaces of the Q-criterion (Q = 500) colored with the Mach number. 
Figure 5.33 plots contours of the turbulent kinetic energy and Reynolds stress component 
τxy. No significant differences between ILES and LES are clearly visible for the Cp and Cf 

profiles in Figure 5.31. The three-dimensional vortical structures shown in Figure 5.32 seem 
likely to be identical to those obtained using the ILES technique shown in Figure 5.28. Like 
the ILES results, the LES results show the positive effect of a higher polynomial degree 
on the solution, and it seems that for the flow at these conditions, excessive dissipation of 
resolved scales—associated with the lower polynomial degrees—has a greater effect than 
the effects of the unresolved scales. 

The contours of the turbulent kinetic energy and Reynolds stress component τxy ob­

tained using a LES method, shown in Figure 5.33, seem to agree to a reasonable degree 
with respect to the shape, extent, and magnitude to contours obtained by ILES, shown 
in Figure 5.29. The boundary layer profiles from the p = 3 simulation in Figure 5.34 
reveal that explicit subgrid-scale modeling has little effect, and the resulting BL profiles 
are similar for both approaches. 



95 5.3. Results and Discussion 

-1.5

-1

-0.5

 0

 0.5

 1
 0  0.2  0.4  0.6  0.8  1

C
p

x/c

p=1 LES
p=2 LES
p=3 LES

p=1 ILES
p=2 ILES
p=3 ILES

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.2  0.4  0.6  0.8  1

C
f

x/c

p=1 LES
p=2 LES
p=3 LES
p=1 ILES
p=2 ILES
p=3 ILES

(a): Cp (b): Cf 

Figure 5.31: Comparison of ILES and LES approaches shown on Cp and Cf . Meshes 
have comparable distribution and resolution of the SP. Results are for α = 4◦, 1M DOFs, 
p = 1, 2, 3 simulations. 

(a): p = 3 [1M DOFs]
 

(b): p = 2 [1M DOFs] (c): p = 1 [1M DOFs] 

Figure 5.32: Instantaneous iso-surfaces of Q-criterion (Q = 500) colored with the Mach 
number. Results are for LES (WALE model), α = 4◦, 1M DOFs, p = 1, 2, 3 simulations. 
Compare with ILES in Figure 5.28. 
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(a): LES p = 1 [1M DOFs] (b): LES p = 1 [1M DOFs]
 

(c): LES p = 2 [1M DOFs] (d): LES p = 2 [1M DOFs]
 

(e): LES p = 3 [1M DOFs] (f): LES p = 3 [1M DOFs] 

Figure 5.33: Reynolds stress (u v ) contours and turbulent kinetic energy (TKE) at α = 
4◦ . Results are for LES (WALE model), 1M DOFs, p = 1, 2, 3 simulations. Compare with 
ILES in Figure 5.29. 
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Figure 5.34: Boundary layer profiles of mean-squared fluctuations of u-velocity (u 2) ob­
tained from ILES and LES are compared with the literature at α = 4◦ . 
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5.3.6 Comparison of time-stepping approaches, α = 4◦ 

This section compares results obtained using the implicit second-order accurate-in-time 
LU-SGS algorithm with the explicit RK3 scheme. Figure 5.35 plots Cp and Cf for p = 
1, 2, 3 simulations on a grid with 1 million DOFs for both time-stepping schemes. The 
time step sizes, Courant–Friedrichs–Lewy (CFL) numbers, and CPU cost can be found in 
Section 5.3.1 in Table 5.2. The second-order accurate LU-SGS scheme seems to produce 
equivalent flow solutions compared to the results obtained using the third-order explicit 
approach. Moreover, it seems that an implicit time step of 0.0002 is adequate, without 
any effects on the computed turbulence. The explicit time step is 2 orders lower than the 
implicit time step, and the LU-SGS has shown an average calculation speed-up by a factor 
of 5 while producing results that agree reasonably well. It is noteworthy that the meshes 
have not been optimized for the best possible performance with explicit schemes. If explicit 
schemes have a limitation for the maximum allowable time step due to their low stability, 
they require special care when generating the mesh for compressible wall-bounded flows, 
where grids are clustered in the viscous boundary layer. We have used a rather fine mesh 
near the trailing edge and it is responsible for the smaller explicit time steps than those in 
the literature. The CFL of 0.45 is a reasonable value for an explicit-time integration and 
our intention was to confirm the equivalent flow solutions and the amount of speed-up for 
the explicit and implicit methods with our code. 
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Figure 5.35: Effect of temporal discretization techniques on Cp and Cf . Results are for 
α = 4◦, 1M DOFs, p = 1, 2, 3 simulations, second-order LU-SGS and third-order RK3 
schemes. 





Chapter 6
 

Conclusions 

6.1 Summary 

The present thesis contributes to the field of implicit large-eddy simulations (ILESs). 
The purpose of this research was to examine capabilities of a method developed with a 
high-order flux reconstruction scheme (FR) for high-fidelity computational fluid dynamics 
(CFD) simulations of transitional flows at low-Reynolds-numbers. 

The method developed with a high-order FR in the ILES framework was applied to two 
test cases, the compressible Taylor–Green vortex (TGV) problem at a Reynolds number 
of 1,600, which is a turbulent decaying flow exhibiting homogeneous turbulence, and a low 
Reynolds number transitional flow over a rectangular infinite SD7003 wing at Reynolds 
number of 60,000, which represents a realistic aerospace application. 

To expand the scope of the present work, a time-accurate implicit lower/upper symmet­

ric Gauss-Seidel solution algorithm for the application of FR to complex unsteady flows 
was developed. The LU-SGS algorithm was found to produce comparable results to the 
explicit Runge–Kutta scheme while achieving better computational efficiency. Moreover, 
several numerical parameters of the LU-SGS scheme were investigated to limit numerical 
errors and investigate the performance and accuracy of the algorithm. In addition to that, 
the effects of eddy viscosity on the solution were evaluated and ILES approach validated. 
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The first case, the compressible TGV problem at Re = 1,600, was considered for under-
resolved to well-resolved scenarios. Low polynomial orders p = 1, 2 showed excessive 
numerical dissipation, which had a significant impact on the accuracy of predictions. On a 
positive note, the predictions significantly improved as the polynomial order increased. The 
benefits of the solution approximated by a high-order polynomial were clearly identified. 
The FR scheme at p = 4 with 643 degrees of freedom (DOFs) produced quite similar results 
to p = 1 with 1923 DOFs. The difference of 27 times more DOFs for p = 1 has a huge 
impact on the calculation cost. Despite that low-order schemes were quite inaccurate at 
low mesh resolutions, they were found stable due to the high numerical dissipation. On 
the other hand, high-order schemes excelled in accuracy but were unstable, especially at 
very low mesh resolutions. Medium polynomial orders showed a good balance between 
accuracy and stability. Furthermore, we found that the TGV simulations without any 
explicit SGS model outperformed simulations with the SGS turbulence accounted for by 
the eddy viscosity model. The eddy viscosity sub-grid models are inherently dissipative 
and our findings are in agreement with those reported in the literature. On the other hand, 
the added dissipation from the sub-grid scale model seems to have positive effect on the 
stability of high-order polynomials. 

The second case was a transitional flow at low Reynolds number of 60,000 around the 
SD7003 wing. The flow around the airfoil under this condition is characterized by laminar, 
transitional, and turbulent flow regions, forming a time-mean laminar-separation bubble 
(LSB) on the suction side of the SD7003 airfoil. The LSB has noticeable effects-often 
undesirable-on the airfoil performance. Simulations were carried out at α = 4◦ and 8◦, and 
Re = 60,000 with a maximum of 2 million DOFs for the fourth-order (p = 3) simulations. 
Flow solutions were obtained with polynomials of degree p = 1, 2, 3, resulting in second-, 
third-, and fourth-order accurate FR schemes, respectively. Several numerical parameters 
of the LU-SGS scheme were investigated at α = 8◦ and Re = 60,000 to limit numerical 
errors and highlight performance. The calculation cost with the second-order accurate 
LU-SGS scheme was about 1.5% higher than the cost with the first-order accurate LU­
SGS scheme. The LU-SGS scheme was compared to the explicit Runge–Kutta scheme and 
the LU-SGS had an average calculation speed-up by a factor of 5 while producing results 
that agree reasonably well. Simulations on meshes with a constant number of DOFs for 
polynomial degree p = 1, 2, 3 highlighted the positive effect of high-order approximations 
on the solution. Also, the dissipation added by the sub-grid scale model seemed to have 
little effect on the solution. 
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We achieved remarkable agreement with the reference data in the literature, consid­
ering that relatively coarse meshes were used in this study. The computed separation, 
reattachment, and aerodynamic forces (CL and CD) agreed reasonably well with many ref­
erence data obtained from various high-order schemes using time-accurate explicit/implicit 
methods. 

Based on the results, we can conclude that the developed method with the FR can be 
a reliable tool of ILES for transitional flows at low Reynolds number flows. 
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