
Doctoral Thesis

Study on method-based and trace-based
just-in-time compilation for scripting languages

スクリプト言語向けメソッド方式および
トレース方式Just-In-Timeコンパイラの研究

Masahiro Ide

Graduate School of Engineering,

Yokohama National University

Supervisor: Associate Professor Kimio Kuramitsu

September 2015

Abstract

Applications written in scripting languages are widely used on web application develop-

ment. Even on the server side application, programmers are using scripting languages such

as Ruby to building complex applications. Since the complexity and the number of the ap-

plications written in these scripting languages grown, the performance of these applications

is becoming important.

A scripting language’s design provides the high productivity and easiness of writing

programs to the programmer, while a performance of a scripting language implementation

still remains an issue. To improve the performance of the scripting language, many re-

searchers attracted the attention of a JIT (Just-In-Time) compilation technique for scripting

language to construct high-performance implementations.

In this thesis, we propose two JIT compilers for the implementation of scripting lan-

guages. The difficulty in terms of aiming to improve the performance of JIT compiled code

is in the dynamic typing and cooperation with its own runtime. In Chapter 3, we propose

a method-based JIT compiler for a statically typed scripting language KonohaScript. We

reveal the performance of the portion other than the type checking using a statically typed

scripting language. We use a statically typed scripting language KonohaScript to analyze

language runtime the performance impact of the JIT compiled code.

Another proposal is a trace-based JIT compiler for a dynamically typed scripting lan-

guage Ruby. Chapter 4 describes RuJIT, a trace-based JIT compiler for Ruby, which traces

program code to determine frequently executed traces (hot paths and loops) in running

programs and emits optimized machine code specialized to these traces. We describe the

design and implementation of the RuJIT compiler. Then we show that two Ruby’s func-

tions and characteristics make difficult to improve the performance of JIT compiled code.

To produce better quality code, we describe solutions for these issues as well as imple-

mentation of optimization techniques. We also evaluate the application of trace-based JIT

compilation technique to Ruby interpreter and explain performance impact of our approach.

要旨

近年，Webアプリケーション開発を中心にスクリプト言語が広く利用されている．特
にサーバサイドアプリケーションにおいては複雑なアプリケーションの記述にもスク
リプト言語，例えばRuby言語が利用されている．そしてスクリプト言語で記述され
たアプリケーションの複雑化，大規模化に伴い，アプリケーションの実行パフォーマ
ンスにも注目が集まってきている．
スクリプト言語は，プログラムの書きやすさ，生産性の高さに注力して設計が行

われており，その実行パフォーマンスは犠牲となってきた．そこで，これまでに多く
の研究者や開発者がスクリプト言語処理系の実行速度向上のために JIT (Just-In-Time)

コンパイル技術に取り組んできた．
我々は，2つのスクリプト言語処理系に対しそれぞれ JITコンパイラを提案する．

JITコンパイラによって言語処理性能の向上を目指す上で困難な点は動的型付けと独
自の言語ランタイムにある．まずChapter 3では，静的型付けスクリプト言語 Konoha

の上にメソッド方式 JITコンパイラを構築し，型検査のオーバーヘッド以外の部分の
JITコンパイルの性能を明らかにする．我々は JITコンパイラが生成したコードのう
ち言語ランタイムが性能に与える影響について分析を行い，生成されたコードと言
語ランタイムの連携で生じるオーバヘッドを改善する最適化手法を構築し，評価を
行った．
次にChapter 4では本研究では JITコンパイル技術の一手法である Trace-based JIT

コンパイル技術を Ruby処理系に適用した．我々は，Ruby言語の C言語による処理
系 CRubyを対象に，CRubyが生成したバイトコードをトレースし，頻繁に実行され
た箇所（たとえばループなど)を実行時に機械語に変換する Trace-based JITコンパイ
ラ RuJITを構築した．本研究ではRuJITに実行時最適化技術をRubyプログラムの意
味を変更しないよう適用した．とくに Rubyの動的特性や Rubyプログラムに頻出す

i

る記法の１つであるブロック記法に着目した最適化手法を適用した．最後に，構築し
た JITコンパイル手法，最適化手法の性能評価を行うため，Ruby処理系に付属する
ベンチマークセットを利用し，それぞれの最適化がどの程度性能に寄与しているかを
評価した．

ii

Acknowledgments

I am deeply indebted to my supervisor Associate Prof. Kimio Kuramitsu, for leading

me to this very exciting area in computer science, programming language design, and im-

plementation. And I am also indebted to him for the financial assistance. He provided me

numerous enlightening suggestions and comments. He also mentally encouraged me in my

work, and gave me numerous changes to meet many researchers.

I am grateful to Prof. Koichi Shudo, he and IPA adopted me IPA Exploratory IT Human

Resources Project (the MITOH youth program). His stimulating suggestions and their

financial assistance help to building a foundation of my research.

I am grateful to the professors in the department of physical and information engineer-

ing in Yokohama National University. They have stimulated me in positive and important

ways since I was an undergraduate student. Also, I deeply thank to students of Kuramitsu

laboratory. They gave me much advice and encouragement.

I am more than thankful to Dr. Koichi Sasada and Ruby Association, for their insight-

ful comments on the implementation aspects of my work. They pointed out numerous

problems in our system of early stages.

I would like to give my special thanks to Yukihiro Matsumoto, the author of the Ruby

language, which is the target language of my thesis. He developed a grate programming

language, and his thesis would not have been possible without his team’s help.

In addition, I am indebted thank to JST/CREST research grants ”Dependable Embed-

ded Operating System for Practical Use” and JST/DEOS R&D Center for their financial

assistance. This thesis would not have been possible without their help.

Finally, I am thankful to my family for their advice and financial help.

iii

Contents

Abstract i

要旨 i

Acknowledgments iii

List of figures viii

List of tables ix

1 Introduction 1
1.1 Motivation . 1

1.2 Overview . 2

2 Just-in-time Compilation 3
2.1 Overview of Just-in-time Compilation . 3

2.2 Method-based JIT Compiler . 4

2.3 Trace-based JIT Compiler . 5

2.3.1 Trace Selection . 7

2.3.2 Trace Cache . 8

3 A Method-based JIT compilation for a statically-typed scripting language 10
3.1 Introduction . 10

3.2 Scripting Language Runtime . 11

3.2.1 Definition of Scripting Language 11

iv

3.2.2 Scripting Language Runtime . 12

3.2.3 KonohaScript Runtime System . 13

3.3 Design of KonohaLLVMJIT Compiler . 15

3.3.1 Konoha-LLVMJIT compiler . 15

3.3.2 LLVM IR Code Generation . 16

3.3.3 Sample LLVMJIT Execution . 17

3.4 Implementation . 18

3.4.1 Direct Invocation Between Compiled Methods 18

3.4.2 Inlining Runtime Library . 20

3.4.3 Field Access and Memory Layout 23

3.5 Performance Evaluation . 23

3.5.1 Benchmark Programs . 25

3.5.2 Effectiveness of LLVMJIT and Optimizations 25

3.5.3 Comparison to C++, and Java . 27

3.6 Summary . 29

4 A trace-based JIT compiler for Ruby 30
4.1 Introduction . 30

4.1.1 Ruby . 30

4.1.2 Challenge of the development of JIT compiler for Ruby 31

4.1.3 Ruby Feature . 32

4.1.4 Ruby implementation . 37

4.2 Problem . 40

4.3 Implementation . 40

4.3.1 Overview of RuJIT . 41

4.3.2 Compiling YARV to RuJIT IR . 42

4.3.3 Trace Selection Engine . 47

4.3.4 Trace Recording . 47

4.3.5 RuJIT Low-level IR (LIR) . 50

4.4 Trace Optimizations . 51

4.4.1 Redundant guard removal . 52

v

4.4.2 Trace Recording and Specialization 54

4.4.3 Code Generation . 57

4.5 Evaluation . 59

4.5.1 Experimental Setup . 59

4.5.2 Performance comparison . 59

4.5.3 Trace Length and Transition . 60

4.6 Summary . 63

5 Related work 68
5.1 Just-In-Time Compilation . 68

5.2 Ruby Virtual Machines . 69

6 Conclusions and Future Work 71
6.1 Method-based JIT for Konoha . 71

6.2 Trace-based JIT for CRuby . 72

Publications 73

References 75

vi

List of Figures

2.1 Compilation units. (A) compilation units for a method-based JIT compiler,

(B) compilation units for a trace-based JIT compiler 5

3.1 Architecture of KonohaScript . 13

3.2 Memory layout of Object . 15

3.3 An example KonohaScript program . 18

3.4 The KonohaIR sequence for the program in Figure3.3 19

3.5 The LLVM IR sequence for the program in Figure3.4 20

3.6 Factorial program written in KonohaScript 21

3.7 The KonohaIR sequence for the program in Figure3.6with specialized in-

terface . 21

3.8 inlining native method provied by runtime library 23

3.9 The memory layout of the object that has less than 3 fields 24

3.10 Performance improvements of each optimization 26

3.11 Performance comparisons between C++, Java and our JIT compiler 28

4.1 Definition of Range.each method and a toy program which use block 35

4.2 Bytecode for Figure4.1 . 39

4.3 A overview of RuJIT . 41

4.4 Toy program that computes the 1st - 100th number in Fibonacci sequence

using loop. 42

4.5 Trace selection algorithm . 48

4.6 Bytecode instruction handler for opt plus 49

4.7 Type lattice used by our type inference algorithm 54

vii

4.8 simplified version of Figure4.1 . 55

4.9 Traces with block . 56

4.10 Performance comparisons between RuJIT and YARV 61

4.11 Performance comparisons between different hot trace and cold trace thresh-

olds . 62

viii

List of Tables

3.1 Description of benchmarks . 25

3.2 Comparison of the compilation time of the benchmark program 27

3.3 Comparisons of memory usage of a native code generation between Java

and our JIT compiler . 28

3.4 Comparisons of the compilation time of a native code generation between

Java and our JIT compiler . 29

4.1 Part of the list of LIR instructions . 64

4.2 Part of the list of LIR constant folding rules. Constants c only match the

instruction for constants and PC represents the exit point of the trace . Most

instructions for arithmetic and comparison can optimize with constant fold-

ing. But we cannot optimize operations which have side effects including

throwing exception and the VM stack operations. 65

4.3 List of Ruby methods which RuJIT includes into trace 65

4.4 List of Ruby methods which RuJIT reimplements 65

4.5 Trace Length . 66

4.6 A number of transition between interprer and traces 67

ix

Chapter 1

Introduction

1.1 Motivation

One of the oldest high-level programming language that is still in use today is LISP[36].

The features that LISP provided have been inherited by many of the programming lan-

guage called dynamic language today. The great flexibility of these languages, the ease of

development has always made the programmers very attractive.

Due to various reasons, dynamic languages became popular in the last two decades,

with several so called scripting languages became mainstream. One of the reasons for

that is the technological progress of computer hardware. This solved the slowness of im-

plementations of scripting languages and expanded the program domains of the scripting

languages can solve.

In addition, to solve the problem of the making scripting languages faster, as [4] nicely

illustrates, many researchers have been tackled in a number of different ways over the

years. And these approaches can be divided into two categories, writing fast interpreters

and writing Just-In-Time(JIT) compilers.

The key idea behind writing fast interpreters is to reduce the cost of interpretation over-

head. However this approach works effectively only for the cost of interpretation that dom-

inates the total execution time. On the other hand, JIT compilers have proved to be very

effective at optimizing different kinds of overhead introduced by scripting languages. The

main characteristic of JIT compilers is that they generate machine code at runtime and only

1

when needed.

In this thesis, we explore and investigate new techniques for JIT compilation. In partic-

ular, we propse two JIT compiler implementation that emphasize the two points of perfor-

mance bottleneck of JIT compiler for scripting languages: type system(dynamic typing or

static typing) and runtime overhead of generated native code.

Our choice of the bottleneck point is based on the current design of Ruby, which em-

phasize the high productivity and easiness of writing rather than execution efficiency. Our

goal is to improve the execution performance of the implementations of scripting language

using JIT compiler. We firstly tackled to a method-based JIT compiler for a statically typed

scripting language, Konoha to reveal the performance of JIT compiled code without any

type checking. And second, we studied application of JIT compilation to the Ruby inter-

preter.

1.2 Overview

This thesis is organized as follows. The following Chapter 2 describe a JIT compilation.

In Chapter 3, we develop a efficient method-based JIT compiler for Konoha, a statically

typed scripting language. Chapter 4 then describes our trace-based JIT compiler, RuJIT

and discuss how well RuJIT performs for a set of benchmark programs. Related work is

discussed in Chapter 5. This thesis ends with conclusions and an outlook on future work in

Chapter 6.

2

Chapter 2

Just-in-time Compilation

2.1 Overview of Just-in-time Compilation

In contrast to the ahead-of-time (AOT) compilation, Just-In-Time (JIT) compilation com-

piled code at runtime. And recently, JIT compilation is employed by a modern imple-

mentation of programming languages and programing language environment; for example,

Java Virtual Machine[32, 1, 23], implementations of JavaScript[22, 19], and Python[9].

Because a JIT compiler compiles at runtime, JIT compiler may improve the code during

optimization phase with the information collected at runtime. For example, an AOT com-

piler for Java may compiles virtual function call using an indirect branch. This is costly

since hardware branch prediction is difficult to predict the target of branches, and it causes

pipeline stalls. A JIT compiler, on the other hand, compile each call site to a direct branch

to the method of most commonly encountered type, proceeded by a check that the object

type is indeed as expected. If this check fails, the execution falls back to the indirect branch

technique. JIT compilers for dynamically typed languages such as JavaScript and Python

employ this method.

One of the elements that determine the performance of a JIT compiler is to determine

what constitutes a compilation unit. The compilation unit of the traditional compiler is a

whole file or module. Because the compilation is interleaved with program execution, com-

piling large part of the program at once can cause a substantial delay in the program. And

compiling code also increases the memory usage of the program, which leads to another

3

reason to minimize the total amount of compiled code.

JIT compilers commonly choose a compilation unit from following unit : a method and

a trace. And each JIT compiler that adopts these compilation units is called method-based

JIT, trace-based JIT, respectively.

Method-based JIT
A method-based JIT uses a single method as compilation unit. Using profile data, the com-

pilers identified hot functions and then compiled and optimized using standard compilation

techniques on the control flow graph of the method. The compiler typically has to traverse

the program until a fixed-point is reached slowing down compilation speed.

Since AOT compilers include traditional compilers employ a method as compilation

unit, the same optimization techniques used for AOT compiler can be used in method-

based JIT compiler (if these optimizations run quickly).

A method-based JIT compiler uses a profiling data such as the number of times a func-

tion is invoked. In Figure2.1 (A), a method-based JIT compiler compiles two methods

(method A and B) separately.

Trace-based JIT
A trace-based JIT compiler uses a trace as compilation unit. A trace is a liner sequence

of instructions that has a single entry point and one or more exit points. A trace-based

JIT compiler is not bounded by the method boundary, and it often includes part of several

functions. And if there are multiple frequently executed paths in the program, these paths

may cover by multiple traces.

In Figure2.1 (B), a trace-based JIT compiler creates traces from each execution path,

respectively. The generated traces are often contained some replication of code. However,

these replicated code increase the opportunities for optimization within each trace.

Following section describes the detail of trace-based JIT compiler.

2.2 Method-based JIT Compiler

A method-based JIT compiler compiles a single function at a time. Because the natural

compilation unit for the implementation of most programming languages is a single method

(or a single function) and traditional AOT compilers uses a function as a compilation unit,

4

!

"

$

%

&

!"#$%&'()

'

(

)

!"#$%&'*)

"

$

+,-."'/)

01&")

"21#)

$

%

+,-."'3)

'

(

)

01&")

"21#)

!

456''7"#$%&) 486''#,-.")

Figure 2.1: Compilation units. (A) compilation units for a method-based JIT compiler, (B)
compilation units for a trace-based JIT compiler

method-based JIT compiler can use same techniques that is used in AOT compiler if they

can run quickly enough. And it is also easy to connect compiled code with bytecode if both

of code use the same interface (or calling convention).

As mentioned above, it is easy for a method-based JIT compiler to interface compiled

code with bytecode. However it is difficult to replace a running function to compiled code.

To achieve this, a method-based JIT compiler uses on-stack replacement (OSR)[25] tech-

nique to replace with an optimized version of the same running function. Using OSR tech-

nique, JIT compilers collects the execution state of a particular method. And JIT compiler

generates the code that updates the value extracted from the stack frame of the previous ver-

sion of method and finally, JIT compiler replace old stack frame with new one and restarts

execution in the new version of method.

2.3 Trace-based JIT Compiler

A trace-based JIT compiler compiles only a trace. A trace is straight-line codes with no

control flow join points except that the last instruction might loop back to the beginning.

If the original code contains conditional branch, a trace contains a guard. A guard is a

5

runtime check instruction to check that the program state is indeed as expected.

When the guard fails, the execution leaves the current trace and fall back to the inter-

preter or invokes another trace.

Trace-based JIT commonly has three execution modes.

• Interpreter mode

• Record mode

• Native mode

Interpreter mode
In interpreter mode, the interpreter executes bytecode instructions, and the compiler de-

tects the target of compilation. Execution of a trace-based JIT starts from this mode. In

interpreter mode, a trace-based JIT compiler finds specific certain bytecode instruction to

detect a trace head. A trace head may be an entry point of a trace. When the interpreter

executes such instructions, trace-based JIT compiler first look for the traces containing the

trace head to the trace from the trace cache that contains already recorded traces. If the

trace is found, execution is transferred into the machine code that the trace has. Then the

interpreter is switched into native mode. On the other hand, if the trace is not found, the

hotness counter is assigned to the trace head, and the hotness counter is incremented. When

the hotness counter exceeds the threshold, the interpreter is switched into record mode.

Section 2.3.1 discusses techniques for selecting trace head.

Record mode
In record mode, the interpreter executes bytecode instructions and records which instruc-

tion the interpreter executes. In common case, record mode is finished when the following

condition is fulfilled.

• a loop is found. i.e., execution reaches a trace head.

• the start of an existing trace is found.

• an exception is thrown.

• the recorded trace has become too long.

6

When a trace-based JIT recording finished successfully, the recorded trace are compiled

into machine code. Then the machine code and the recorded trace are placed into the trace

cache, and the interpreter is switched into interpreter mode.

Native mode
In native mode, we execute compiled machine code and the execution continues until a

guard in the native code fails. If a guard fails, the execution leaves the machine code and

falls back to the interpreter. Then the interpreter is switched into interpreter mode. In this

case, the interpreter marked an exit point of the trace to record uncovered execution path.

2.3.1 Trace Selection

The quality of the selected trace is a key feature to determine the performance of a trace-

based JIT compiler. If the recorded trace is too short, it cause frequent transitioning be-

tween native code and the interpreter and has less possibility of optimization. In contrast,

the longer trace means less transition and can apply more optimization.

Because a trace is created speculatively by the path that is frequently performed in a

particular code path, the overhead of native code call is increased when a trace-based JIT

compiler records the wrong execution path as trace. Therefore, a trace-based JIT compiler

needs to detect hot loop such as to occupy most of the execution time of the program, and

record the trace.

A trace-based JIT compiler uses a counter to profile the program. When the interpreter

executes certain bytecode instruction, trace-based JIT compiler marks these instructions

as potential trace heads, which is places where a trace may start, and associate a hotness

counter with each trace head. Typically, a trace-based JIT compiler uses following the

algorithm to detect hot path.

• Next executed tail (NET)[5]

• Last executed iteration(LEI) [24]

• Natural loop first (NLF)[40]

Next executed tail (NET)
Next executed tail (NET) strategy is heuristic to detect potential trace heads. The NET

7

strategy considers all of the targets of backward branches to be potential trace heads. This

heuristic is derived from that every loop contains at least one backward branch and the

target of a backward branch is very likely to be a loop header, and thus the head of several

hot traces in the loop body.

While it is inaccurate in some cases, the NET strategy can detect hot trace without any

knowledge about control flow information of the program.

Last Executed Iteration(LEI)
Another strategy to detect hot trace is Last Executed Iteration (LEI) strategy. LEI strategy

is a refinement of NET strategy and as same as NET strategy, LEI strategy considers the

target of backward branches to be potential trace heads. LEI strategy records branch targets

in a branch history buffer, and when a branch target appears twice in the trace recording

buffer, the LEI strategy creates a trace corresponding to the path between the repeating

branch targets.

Natural loop first
When we can able to access to the information about program structures (such as loops),

Natural loop first strategy constructs a trace starting from a loop header and spanning the

loop body.

All trace selection schemes also consider the exit point of a trace as potential trace

heads. This consideration ensures that a trace-based JIT compiler can compiles uncovered

execution path.

2.3.2 Trace Cache

The recorded trace and the associated machine code are placed into the trace cache.

When recording finished successfully, the recorded trace compiled into machine code.

Then the machine code and the recorded trace are placed into the trace cache, and the

interpreter is switched into interpreter mode.

Note that trace-based JIT compiler compiles traces for the behavior that was observed

when the trace was recorded. When the behavior of the program changes, because assump-

tions that were constructed from the old behavior may not be suitable for the new behavior,

the compiler needs to remove old cold trace or re-compile the recorded traces with the new

8

behavior.

For example, Dynamo[5] employs a novel simple heuristic to detect such changes in

behavior. When the behavior changes, new parts of the program become hot, and it causes

a sharp rise in new trace creation. If the trace creation rate increase, Dynamo flush the

trace cache and discards all machine code in the trace cache. Discarded code will quickly

re-compiled and restore into the trace cache.

9

Chapter 3

A Method-based JIT compilation for a
statically-typed scripting language

3.1 Introduction

In the past decade, significant advances have been seen in scripting language just-in-time

(JIT) compilers for JavaScript[19, 22], as well as for other languages such as Python[9].

JIT compilers can dramatically improve performance by converting application code into

machine code in the execution time. Unlike a simple interpreter for scripting language, JIT

compiled code is executed directly on the CPU.

The initial implementation of a scripting language JIT compiler is to typically gen-

erate native code by translating a higher-level bytecode into native code naively, where

applications run slower than equivalent implementations in C and Java. This translation is

straightforward, but it leads to the following two overheads being introduced into a script-

ing language. First, the scripting language JIT compiler needs to take into account the

dynamic typed code. Second, this JIT compiler needs to perform code generation with a

consideration of collaboration and with runtime for its own language.

Relevance for dynamic typing and performance of code that the JIT compiler generates

is well documented by Chang et al.[11]. They evaluate JIT compilers by measuring their

performance changes for each full-typed, partially-typed, and un-typed piece of code. As a

result, they report that speed improvements of about 60 percent, on average, are gained by

10

adding type information in the benchmark codes.

In this chapter, we evaluate an overhead on JIT compiled code except where this is

caused by dynamically typing on that interpreted source code. To achieve this goal, we

constructed a JIT compiler for a statically typed scripting language, KonohaScript. Fur-

thermore, we describe the design of a JIT compiler for KonohaScript based on a Low Level

Virtual Machine (LLVM[35]) as the compiler backend. In addition, we identify three main

performance-inhibiting issues in the naive translation of the code in order for it to work to-

gether with the scripting language runtime. Finally, we evaluate the execution performance

by using a benchmark application with our JIT compiler.

3.2 Scripting Language Runtime

In this section, we define the word Scripting Language. We describe the features provided

by the runtime system of scripting languages such as Ruby, Python, and Lua. In addition,

this section describes the design of KonohaScript and the relevant parts to our JIT compile.

3.2.1 Definition of Scripting Language

Scripting language is not clearly defined scientifically, but one of the common features of

scripting languages is its dynamic type. The classification of the language to perform as

a dynamically typed language is included with Lisp and Scheme, but these are not called

scripting languages. In recent years, several attempts have been made to integrate static

typing features into existing dynamic languages such as ActionScript and Thorn. Another

feature for scripting language is an interpreter. Scripting languages require source code (or

scripts) at runtime, which need to load and execute scripts.

In recent years, in an effort to improve their performance, scripting languages were

often accompanied by a JIT or bytecode compiler. Therefore, a scripting language is not

able to be classified simply by the presence of the compiler. The main difference between

compiled languages (e.g. C and Java) and scripting languages is that scripting languages

can load a script and execute it at runtime. In this section, we define a scripting language

as a program processing system that has an interpretation engine and an execution engine,

11

which are both integral parts of the system.

3.2.2 Scripting Language Runtime

Scripting languages are composed from the following four components: an execution en-

gine, a compiler, an extension library, and a memory management system.

Execution Engine and Compiler
The runtime library for a scripting language has an interpreter that is a mechanism to con-

vert a script to its own format in order to execute a script. Execution of a script is carried

out to coordinate the execution engine and run-time libraries. In recent years, scripting

languages have often provided a bytecode interpreter and JIT compiler to improve perfor-

mance.

Extension Library
Script language runtime can be enhanced by a library written in C and a function provided

by a script. The scripting language user can then use a function not only written in the

scripting language but also those provided by the library extension. This runtime has two

variations of function extended by the user. One is written in C and is compiled before

execution, while the other is written in a script and is compiled as bytecode. From a user’s

perspective, they can treat these functions equally.

Each function provided by the runtime library has a calling convention to make calls to

each other. Furthermore, the scripting language stack structure is used to transfer data both

to and from the execution engine and run-time libraries. There are two main methods used

when implementing a stack structure. One uses the native stack and the other uses its own

stack that is allocated on the heap.

Memory Management
Memory management is one of the most difficult parts when writing a program correctly

and efficiently. In order to manage the memory, the scripting language runtime makes use

of the garbage collection (GC). When the runtime library allocates new data, the runtime

library uses the memory region managed by the GC. Then the runtime library modifies

these memory regions based on its own memory layout policy.

The memory layout of the data structure consists of two main memory regions, the

12

header region and the body region. In the header region there are both object type informa-

tion and flags to indicate the characteristics of each object. For example, the runtime uses

the type information for type checking, while the runtime uses the body region to store the

actual data.

3.2.3 KonohaScript Runtime System

This section describes the runtime library of KonohaScript in relation to the following sec-

tions. KonohaScript[33] is a statically typed object-oriented scripting language that has

been developed from scratch in C. More information about the language design of Kono-

haScript can be found in [33]. KonohaScript has adopted a class-based, object-oriented

model. This means that the behavior of objects such as methods and fields are defined in

the class. In KonohaScript the user can provide attributes for classes and methods, and the

following is an attribute that can be granted.

• @Final: Class with no inheritable

• @Singleton: Class is guaranteed to be a single instance

• @Native: Method is implemented in C

• @Static: Static method

Figure3.1 shows the elements that make up the KonohaScript runtimes.

!"#"$%&'()*+!

,-.'/0"#1,#2)#.!

!"#"$%341

!"#"$%5"6*)7.(1

&'()*+1

89+.'":.!

;/#06.<)=(%(9!

"#$%&$'1

4.6"(91

4%#%2.(1

5>,-+.#?)"#1

5>)#+.(@%'.!

A
.
(?
.
(1

B
9
*
.
5
$
.
'C
.
(1

D
*
0
6
)E
.
(1

5
"
:
.
F
.
#
1

Figure 3.1: Architecture of KonohaScript

13

Execution Engine and Compiler
Based on the compile-time type information included in an annotation, KonohaScript im-

plements the well-typed bytecode and a register-based bytecode interpreter (KonohaVM).

KonohaVM executes the source code in the following order. First, the KonohaScript

compiler compiles the source code into bytecode as a single compilation unit. Next, Kono-

haVM evaluates the different methods in the order to which they are described in a script.

Finally, KonohaVM executes the main method.

Extension Library
In KonohaScript, as an interface to calling the extended library functions, all methods are

defined in Fmethod type that is defined in C.

void (∗Fmethod)(CTX ctx, ksfp t ∗sfp, long rix)

ctx (Context) is a pointer to the run-time management information and sfp indicates

a pointer to the top of the call stack (KonohaStack) that is managed by the runtime of

KonohaScript. In addition, rix indicates the index on the stack where the return value of

the method is to be placed. If the C function matches this interface then the KonohaScript

runtime can call this function from a script.

KonohaStack is used to pass data between the methods, such as arguments, and then

return values of the method. When KonohaScript’s runtime invokes a method, the caller

will push the arguments onto the stack pointer in order to call the target method.

With static typing, KonohaScript boxes and unboxes primitive values automatically;

such values include integer, float and boolean. Values of primitive types are handled as

unboxed values, unless it is necessary to treat them as objects. The data structure of Kono-

haStack is adopted as being clearly distinguishable between object reference and primitive.

The following code is the data structure of KonohaStack.

struct ksfp {
union {int i;float f;} data;

kObject ∗optr;

}

14

Memory Management
The memory management system of KonohaScript provides automatic memory manage-

ment using GC. In 64-bit architecture, each object is aligned in 64byte and has a memory

layout as shown in Figure3.2. The header region of the object is composed of a flag which

indicates the object state, information type, and a field that GC is used.

typedef struct {
struct hObject {

ClassInfo ∗cinfo; // type infomation
void ∗gcinfo; // used by GC
long flags;
void ∗metadata;
} h; // object header
struct kObject ∗∗fields; //Object body
} kObject;

Figure 3.2: Memory layout of Object

3.3 Design of KonohaLLVMJIT Compiler

In this section, we describe the design of the KonohaLLVMJIT compiler. LLVMJIT is a

JIT compiler that uses LLVM as a compiler backend. LLVMJIT receives an intermediate

representation of a script and converts it to LLVM Intermediate Representation (LLVM

IR). We describe how to generate LLVM IR in LLVMJIT and devised a point at which we

convert scripts to LLVM IR.

3.3.1 Konoha-LLVMJIT compiler

In order to achieve the generation of highly efficient code, we designed a new intermediate

representation KonohaIR and converted KonohaIR to LLVM Intermediate Representation

(LLVM IR). With the LLVM backend compiler optimizations such as common sub expres-

sion elimination, LLVMJIT finally generated a machine code.

15

KonohaIR is an intermediate language for the purpose of generating efficient code using

LLVM compiler optimizations, and it has made the design of instruction much easier based

on the intermediate representation of both the LLVMIR and KonohaVM bytecode.

KonohaIR consists of two elements, expression and annotation. We designed the ex-

pression based on a representation of the static single assignment (SSA) form. The oper-

ation of each expression has multiple inputs and a single output. The expression and its

operand have been given type information, and the LLVMJIT provides higher-level infor-

mation to generate better code such as a constant value by annotations. Annotations are

used and then converted to LLVM IR and used in the LLVM backhand optimization phase.

3.3.2 LLVM IR Code Generation

In this section, we describe the process of LLVM IR code generation from KonohaIR. All

methods are converted to KonohaIR and then converted to LLVM IR by LLVMJIT. The

instruction sets of the LLVM IR and KonohaIR take a one-to-one correspondence. LLVM

IR is converted to produce the corresponding instructions from KonohaIR. For example,

KonohaIR’s integer〝 add〟instruction supports the〝 add〟instruction of LLVM IR.

LLVM supports the aggressive optimization of a universal language, yet KonohaScript

supports high-level language features such as garbage collection. Both LLVM IR and

KonohaIR provide a mechanism for the representation of data structures and function calls.

As it could not be expressed in a one-to-one correspondence between LLVM IR and Kono-

haIR, we provided a mechanism to convert KonohaIR to LLVM IR individually. In the

following sections we will compare each type system and function call mechanism, and

describe how to convert each correspondence.

LLVM Types

LLVM type systems were originally similar to C, supporting boolean(i1), char(i8), long(i32),

and float. Now its type system supports structs and arrays.

i1, i2, i8, i16, i32, i64

float, double, fp80

array = type [3 x i64] /∗ array type ∗/

16

struct = type {i64, float} /∗struct type ∗/

KonohaScript has three primitive types, boolean, integer, and float. On LLVM IR, these

primitive types are made to correspond to the type bit length matches. In order to represent

type conversion in LLVM IR, we also built the data structure of the object that is compatible

with that used in runtime, and LLVMJIT inserts the LLVM IR express type conversion.

LLVM Functions

In LLVM IR, a function is called based on the calling convention of the architecture. On

the other hand, in KonohaScript all methods are defined in a manner tailored to Fmethod

type and arguments, and return values are then passed through KonohaStack before and

after the method call. When LLVMJIT converts the methods to LLVM IR, we generate the

LLVM IR function by adjusting to the Fmethod interface. In addition, LLVMJIT inserts

the instruction that is stored in the return value to KonohaStack, and then adds a process to

load arguments from the KonohaStack when converting LLVMIR from KonohaIR.

3.3.3 Sample LLVMJIT Execution

In this section, we describe the compilation flow of LLVMJIT using an example. Figure3.3

shows the source code used in the following description.

At first, LLVMJIT translates the KonohaScript code in Figure3.3 into KonohaIR in

Figure3.4. At this time, each block of a script is converted to basic blocks and each part

of the code is translated to SSA form. When LLVMJIT converts code to SSA form, to

be unique of usage and declaration of a variable, LLVMJIT inserts the PHI instruction.

The PHI instruction is represented by a list of pairs of variables and basic blocks. Next,

LLVMJIT performs the translation from KonohaIR into LLVM IR in Figure3.5. With the

exception of those mentioned in the previous section, the conversion to LLVM IR is a one-

to-one transformation from KonohaIR. Finally, LLVMJIT converts from LLVM IR to a

machine code using the LLVM backend.

17

int f(int n) {
int v = 0;
for (int i = 0; i < n; i++)

v += i;
return v;

}

Figure 3.3: An example KonohaScript program

3.4 Implementation

In this section, we describe the optimization applied to the LLVMJIT compiler. LLVMJIT

optimizes for the following items to be considered in the code, which it generates for the

JIT compiler to work with language runtime, and is associated with high execution perfor-

mance.

• Method interface

• Calling runtime library function

• Memory layout of objects

3.4.1 Direct Invocation Between Compiled Methods

In KonohaScript, various kinds of methods co-exist simultaneously, such as methods rep-

resented with bytecode and executed by an interpreter, native methods written in C and

provided by an extension library, and methods compiled by a LLVMJIT compiler. To agree

a calling convention to call each other between different kinds of methods, KonohaScript

provides a single common calling convention. LLVMJIT generates that code and is respon-

sible for matching the common method interface.

As described in Section 3.2, all methods for KonohaScript are defined with the com-

mon method interface Fmethod. Therefore, the code of method invocation that LLVMJIT

generates is not only a simple function call instruction but also contains the operation of

the arguments and return values to KonohaStack. However, in a case where both the caller

18

def Int Script.f (Int i1 0) {
bb0:

i2 0 =@const Int 0
i3 0 =@const Int 0
= jmp bb1

bb1: @loop:cond
i1 1 = mov Int i1 0
i2 1 = phi [(i2 0, bb0), (i4 0, bb3)]
i3 1 = phi [(i3 0, bb0), (i4 1, bb3)]
b5 0 = lt Boolean i3 1 i1 1
= cond Boolean b5 0 bb2 bb4

bb2: @loop:body
i4 0 = add Int i2 1 i3 1
= jmp bb3

bb3:
i6 0 =@const Int 1
i4 1 = add Int i3 1 i6 0
= jmp bb1

bb4
= return i2 1

}

Figure 3.4: The KonohaIR sequence for the program in Figure3.3

method and callee method are compiled by LLVMJIT, the common interface does not have

to be involved and it can eliminate load and store operations to KonohaStack for arguments

and return values. In addition to the common method interface, when both the caller method

and callee method are compiled by LLVMJIT, LLVMJIT provides a specialized interface

that eliminates the operation of the return value and arguments through KonohaStack, and

the compiler generates a call instruction directly.

When LLVMJIT compiles a method it generates code that conforms to two method

interfaces, a specialized interface and a common calling interface. If the method is called

from a non-compiled script, it makes a call via the common calling interface. On the

other hand, the method is called from the compiled code calling convention, switches to a

specialized interface, and the methods are called but not allowed to pass through the Kono-

haStack. As a side note, with dynamic binding the LLVMJIT compiler cannot guarantee

19

define void @f(%ctx∗%ctx, %sfp∗ %sfp, i64 rix){
bb0:

%0 = getelementptr %sfp∗%1, i32 1, i32 1
%arg = load i64∗%0
;; Konoha to load the arguments from the stack
br label %bb1

bb1:
%3 = phi i64 [0, %bb0], [%6, % bb3]
%4 = phi i64 [0, %bb0], [%7, % bb3]
%5 = icmp slt i64 %4, %arg
br i1 %5, label %bb2, label %bb4

bb2:
%6 = add i64 %3, %4
br label % bb3

bb3:
%7 = add i64 %4, 1
br label %bb1

bb4:
%8 = getelementptr %sfp∗%1, i32 rix, i32 1
store i64 %3, i64∗ %6
;; Make the store of arguments from KonohaStack
ret void
}

Figure 3.5: The LLVM IR sequence for the program in Figure3.4

that both the callee and caller methods will always be compiled code. Therefore, LLVMJIT

is restricted to adapt the ideas when the callee method is a final method or static method so

that dynamic binding does not occur.

Figure3.6 shows an example of the factorial method written in KonohaScript and JIT

compiled code, with a common method interface and specialized interface in Figure3.7.

We noted that we would rewrite JIT compiled code for implementation in C for readability.

3.4.2 Inlining Runtime Library

Inlining is a well-known optimization technique to reduce the number and cost of method

calls, and it introduces more opportunities of inter-procedural analysis and optimization.

20

/∗ factorial method ∗/
int factorial(int n) {

if (n < 2) return 1;
else return n ∗ factorial(n−1);
}

Figure 3.6: Factorial program written in KonohaScript

/∗ Common calling interface version ∗/
void fact(CTX ctx, ksfp t ∗sfp, long rix) {

int n = sfp[1].ivalue;
int ret = fact opt(ctx, n);
sfp[rix].ivalue = ret;
}

/∗ specialized interface version ∗/
int fact opt(CTX ctx, int x) {

if (n < 2) return 1;
return n ∗ fact opt(ctx, n−1);

}

Figure 3.7: The KonohaIR sequence for the program in Figure3.6 with specialized interface

In scripting languages, there are many functions provided by extension libraries. To adjust

the difference between the common interface and calling convention of the native method,

wrapping functions are provided in these libraries.

Expanding the scope of JIT compiler optimization by inlining to the runtime library

can be expected to lead to a reduction in the number and cost of method calls, including

wrapper functions. However, in the existing JIT compiler, it is not easy to inline the native

method provided by the runtime library because it is necessary to disassemble the runtime

library and analyze the behavior of each native method at runtime operation.

Our approach is to convert the runtime library code to LLVM IR at the same time the

user compiles the runtime library to native code. The native function expressed as a LLVM

IR is expanded to the main memory at runtime, and LLVMJIT can easily inline native

function code into LLVM IR that is converted from KonohaIR.

We assume that native functions are composed of two parts, the function body and the

21

wrapper to adjust with the common interface. As mentioned in the previous section, the

inlining wrapper function of the native function can allow the removal of the operation

relevant to KonohaStack and thus remove the cost of method calls.

With inlining the wrapper function, LLVMJIT will remove operations relevant to Kono-

haStack in the following steps. At first, LLVMJIT determines the layout of KonohaStack

at the time the wrapper function is called. The layout can be analyzed from the type in-

formation of the method. Next, LLVMJIT performs the in-line wrapper function to the

caller code. Finally, based on the layout of the KonohaStack, LLVMJIT transforms the

values placed on KonohaStack, such as arguments and return values, to local variables of

the caller functions.

We perform inlining with the following rules:

• File size of the runtime library is less than 32KB.

• The length of the wrapper function is equal to, or less than, 64.

The above magic numbers, 32KB and 64, are the parameters to determine how often

inlining happens. Inlining can make performance levels worse by filling up the instruction

cache if it is applied excessively. We determined the above default parameters of 64 and

32KB heuristically. 64 is a number for inline wrapper functions to prevent over inlining.

When the LLVMJIT inline native function is provided by a large scale library, we cannot

ignore the startup and execution time of the LLVM inline optimizer, which includes load-

ing the LLVM IR of the library into the main memory. To reduce the compile time, we

set the threshold to 32KB. Figure3.8 shows the conversion process of the runtime library

into LLVM IR, written in C. Before the user executes the application code, we compile

runtime libraries with an LLVM-based C compiler, named clang, into the LLVM IR. At

the same time, we compiled native code for these libraries. In carrying out the genera-

tion of the LLVM IR from KonohaIR, LLVMJIT performs inlining native methods using

LLVM IR that clang generates. Finally, LLVMJIT removes the stack operations relevant to

KonohaStack and the procedure of inlining is completed.

22

!"#"$%&'()*+,

!"#"$%&',

(()*+&',

,%-./0"1/,

(()*+&',

--./,

!"#"$%,

--./012,

34#+)56-)7(%(8,

9:()++6#;)#;<=,

,%-./0"1/,

<>%#?;<;'"5*)>6(,

Figure 3.8: inlining native method provied by runtime library

3.4.3 Field Access and Memory Layout

Field access is one of the functions frequently used in an object-oriented programming

language. We can expect that accelerating field access will have a high impact on perfor-

mance.

How to access fields of the object will be determined by a memory layout of the object

that the runtime has been established. As a native way, when the JIT compiler adopts its

own layout to represent the object, the compiler needs to track all parts of the runtime that

handle the objects.

In KonohaScript, the object type has an array field to store the member variables (see

Figure3.2) and the fields are allocated in a heap and managed by GC. By improving the data

locality of the object’s field, we store member values directly in the region of the object, as

long as the object has less than three fields (Figure3.9).

We also modified the data layout of the object instance of the class annotated with

@Final, which has less than three fields to examine whether the changes in memory layout

affect the performance of the accessing fields.

3.5 Performance Evaluation

In this section, we describe the effects derived from the LLVMJIT compiler and our opti-

mization techniques. Benchmarks run on the following computing environment.

23

typedef struct {
hObject h;
kObject ∗∗fields; /∗ fields == &fields∗/
kObject ∗fieldsI[3];
} kSmallObject;

Figure 3.9: The memory layout of the object that has less than 3 fields

• CPU: Intel(R) CoreTM i7 2.2GHz

• Memory: 8GB, 1333MHz

• OS: MacOSX 10.7.2

• C compiler: GCC 4.4.5, G++ 4.4.5

• LLVM: version 3.0

• Java: HotSpot 64Bit 1.6.0 33

We use a set of optimization configurations provided by LLVM. We use StandardFunc-

tionPass for the function’s optimization pass and StandardModulePass for the entire pro-

gram optimization.

As described in section 4, we developed three different optimization techniques to im-

prove performance of the JIT compiled code: API, INL, and FLD short. We selected these

techniques to make it clear how much improved these techniques are:

• LLVMJIT without our optimizer (JIT)

• LLVMJIT with a specialized interface (JIT+API)

• LLVMJIT with inlining native function (JIT+ILN)

• LLVMJIT with optimizing field accessing (JIT+FLD)

• LLVMJIT with a specialized interface and optimizing field accessing (JIT+API+FLD)

• LLVMJIT with all optimizations (JIT+API+FLD+ILN)

24

3.5.1 Benchmark Programs

We evaluated the performance of seven programs ported to KonohaScript (details of the

benchmark programs are listed in Table 3.1).

Benchmark Description
AObench[47] Ray Tracing (object creation, field ac-

cess)
DeltaBlue[34] Constraint solver benchmark(field ac-

cess)
NBody Simulation of N-body problem of plan-

etary NBody (field access)
Binarytrees A large amount of the product a binary

tree of depth n (object creation)
Mandelbrot Compute the Mandelbrot set (floating-

point arithmetic)
Richards[34] OS kernel simulation(Field access,

method call)
Spectralnorm compute the 2-norm of a square

matrix(floating-point arithmetic, array
access)

Table 3.1: Description of benchmarks

3.5.2 Effectiveness of LLVMJIT and Optimizations

Figure3.10 shows a comparison of the performance of our JIT compiler with optimization,

which is described in Section 3.4. The overall execution time includes the compilation

time of our JIT compiler. In Figure3.10, the vertical axis shows the execution time that is

normalized by the default LLVMJIT.

We observed about 20 percent performance improvements in the fully optimized code

for AOBench, DeltaBlue, Nbody, and Binarytrees. In addition, these performance im-

provements indicate that LLVMJIT reduced the overhead of using runtime libraries. Our

optimization technique implemented in this section is only eligible for the object that con-

tains more than three fields. This is because benchmarks such as AOBench and Binarytrees

25

!"#$

!"#%$

!"&$

!"&%$

!"'$

!"'%$

($

)*
+,
-.
/0
12
.3
$

45
,6
/.
78
$

9
/1
7+
0:
.2
-$

;5
1/
.<
-.
++
8$

=
;2
7<
$

>
+0
-/
;0
?+
$

@
A
:+
1,
6$

B
C
+
,
?
D
2
1
$D
3
+
$,
2
3
*
/
.+
7
$-
2
$7
+
E/
?
0-
$F
F
G
9
HI
J
KF
2
L
+
.$
58
$:
+
M
+
.N
!

HIJ$

HIJO@PI$

HIJOI=F$

HIJOQF>$

HIJO@PIOQF>$

HIJO@PIOQF>OI=F$

Figure 3.10: Performance improvements of each optimization

create the object with small sized fields, and we observed that this optimization reduced the

number of memory references by fixing the memory layout of an object.

In contrast, we no longer see any performance improvements on Mandelbrot, Richards

and Spectralnorm. With the observation of the benchmark code and LLMV IR generated

by LLVMJIT, we consider there to be three reasons why the performance did not improve.

First, Mandelbrot and Spectralnorm consist of floating-point arithmetic operations and op-

erations of an array, and each operation does not use the runtime libraries. Therefore, we

observed no performance improvement compared to the no optimization option. Second,

because Richards uses the method call with dynamic bindings in many places, we are not

able to perform optimization for the specializing method interface of the JIT compiled

code. The third reason is that Mandelbrot and Richards use the object with more than four

fields and that means our optimization technique is not available. In the main kernel of

each benchmark, we are not able to improve speed field access.

Table 3.2 shows the compilation time for different optimization levels of native method

inlining. Each configuration for optimization is classified by the size of the extension li-

brary file and the number of instructions in the native function.

• (Filesize, Instructions) = (0, 0) disables method inlining for the runtime library. In

this configuration, LLVMJIT performs inlining of only user-defined methods.

26

• (Filesize, Instructions) = (32KB, 64) enables method inlining of the runtime library

when the size of the runtime library is less than 32KB and the length of the native

function is equal to, or less than, 64. In this case, the native method provided by

Math library is inlined but IO library is not.

• (Filesize, Instructions) = (∞, ∞) preforms inlining of all the methods provided by

the runtime libraries.

The compilation time performing inlining on all native methods results in 20-40 percent

of execution time and takes up a lot of execution time. On the other hand, with two other

configurations, the compile time accounted for about 5 percent of the execution time and we

observed that performing inlining of the native method does not adversely affect execution

time.

Benchamrk CompileTime
(0,0)(msec)

CompileTime
(32,64)(msec)

CompileTime
(∞,∞)(msec)

AOBench 240 281 3106
DeltaBlue 328 336 1584
NBody 198 203 3375
BinaryTrees 101 136 1702
Mandelbrot 120 140 1562
Richards 255 266 1877
Spectralnorm 140 151 1340

Table 3.2: Comparison of the compilation time of the benchmark program

3.5.3 Comparison to C++, and Java

In this section, we compare the performance of our JIT compiler with C++ and Java. We

have chosen four benchmarks from the benchmarks shown in Table 3.1 and used equivalent

implementations of benchmark programs in C and Java.

Figure3.11 compares the execution time of our JIT compiler with C++ and Java. We

observed that our JIT compiler has an approximate equivalence to the performance of C++

and Java in NBody, Spectralnorm, and Mandelbrot. On the other hand, our LLVMJIT with

all optimizations is inferior to C++ and Java on Binarytrees.

27

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./01" 23456789-/7:" :8-049.7/6" .;-87167442"

<
4
98
=
>
4
"3
4
7?
/
7:

8
-
54
"/
>
4
7"
0
4
?8
@
96
"A
AB
C
DE
F
!

DEF"

DEFGHIE"

DEFGHIEGJAK"

DEFGHIEGJAK

GELA"

D8>8"

MGG"

Figure 3.11: Performance comparisons between C++, Java and our JIT compiler

Benchamrk LLVMJIT
(bytes)

Java (bytes)

Nbody 7700 3233
Spectralnorm 5591 3915
Mandelbrot 6223 3272
Binarytrees 7521 4211

Table 3.3: Comparisons of memory usage of a native code generation between Java and
our JIT compiler

As described in Table 3.1, Binarytrees composes a large part of the computation with

object creation. We observed that garbage collection is devoted to about 70 percent of the

execution time. We now use a simple mark-and-sweep algorithm for garbage collection,

and we will use a smart GC algorithm to fill the performance gap.

Table 3.3 compares memory usage for the compiled code that Java and our JIT compiler

generate, and Table 3.4 compares the compilation time of our JIT compiler and Java’s

JIT compiler. Because our JIT compiler does not yet preform compilation selectively,

and Java’s JIT compiler does, our JIT compiler is inferior to both memory usage and the

compilation time when compared with Java’s.

28

Benchmark LLVMJIT
(sec)

Java (sec)

Nbody 0.203 0.083
Spectralnorm 0.151 0.095
Mandelbrot 0.14 0.087
Binarytrees 0.136 0.091

Table 3.4: Comparisons of the compilation time of a native code generation between Java
and our JIT compiler

3.6 Summary

In this section, we have described the design and implementation of our JIT compiler,

LLVMJIT and three optimization techniques to help reduce language runtime overhead.

We evaluated the performance by using a benchmark application built on a JIT compiler.

And we show that modification of the object layout and method invocation mechanism can

affect the performance of the JIT compiler generated code.

29

Chapter 4

A trace-based JIT compiler for Ruby

4.1 Introduction

4.1.1 Ruby

The Ruby language is a dynamic typed object-oriented programming language that was de-

signed by Yukihiro Matsumoto. Development of the original implementation of Ruby lan-

guage is stared from 1993 by Yukihiro Matsumoto. The Ruby programming language[52]

is a dynamically-typed object-oriented language. Like Smalltalk, Ruby has no type dec-

larations, allowing programmers to rapidly build and modify systems and this provides

the high productivity and easiness of writing programs to the programmer. Also, Ruby is

blended parts of other programming languages such as Perl and Lisp, and provides many

features such as dynamic typing, meta-programming, high interoperability with other lan-

guage, or closures, which are common with other scripting languages (e.g. JavaScript, Perl,

or Python).

In recent days, Ruby is widely used in web applications, especially used in server-side

applications. Also, as a general purpose programming language, Ruby is used in other ap-

plications such as GUI applications, game development, and business system. And Ruby

community started to implement other Ruby implementation such as JRuby[31] (Java im-

plementation), IronRuby [28](C# implementation), and Rubinius[41] (Ruby implementa-

tion).

30

However, on the other hand, because most of these features are implemented as a part of

the interpreter, there are significant performance gap between Ruby and high-performance

languages such as Java and C. To fill the performance gap, many researchers and scripting

language developers have newly implemented Just-In-Time (JIT) compilers[9, 19, 40, 48,

22]. In Ruby, MacRuby[43], Rubinius[41] and Ishii’s VM[29] introduced a method-based

JIT compiler to improve an execution speed of the Ruby language.

4.1.2 Challenge of the development of JIT compiler for Ruby

There are two problems to speed up the program written in Ruby language. The first one

is that Ruby performance is often bounded by its dynamically typed feature. Moreover, the

second one is to support the dynamic features of Ruby such as reflections (the feature that

access runtime information at runtime).

The first one, dynamic typing enables the programmer to improve the reusability of the

components because the programmers need not to specify the type of variables and func-

tions in the program. The second one, reflection facilitate meta-programming to change the

behavior of program depending on the input data at runtime.

These dynamic features provides the flexibility of programming to Ruby programmers,

but compilers are not able to do static analysis and make generation of efficient target code

difficult. For example, without static information about the types of variables, compilers

must emit code to handle all possible combinations of operand types. This causes a large

runtime overhead on the generated code.

Also to this problem, to achieve a practical and fast JIT compiler, we need to solve prob-

lem describes below, which contains compatibility problem, maintenance ability problem,

and portability problem.

In Ruby, we already have been developed many libraries and using these libraries, we

can construct complex software in many environments.

And we need to maintain a backward compatibility without modifications as possible

to reuse huge program resources. In particular, maintaining compatibility and portability of

both the extension library that extends Ruby and the C API are main issues for constructing

practical Ruby implementation.

31

The original Ruby implementation is called CRuby, which is written in the C language.

And CRuby is the reference implementation of Ruby.

In this section, we describe the features of the Ruby language. And we will introduce

CRuby.

4.1.3 Ruby Feature

Ruby has features listed below. Note that this thesis is not intended to describe the detail

of the Ruby language. Details of the language specification are described in ISO/IEC[30]

• Object-oriented feature (class, method invocation, mixin)

• Exception

• Block, closure

• Garbage collection

• Dynamic code loading

• Extension Library

Object-oriented feature
Ruby has a class-based object-oriented feature. Ruby’s object system is based on a single

inheritance, and we can define the method in classes. The following example (1) defines

Human class and instance method say. And (2) create the instance of Human class and

invoking say method.

(1) class definition

class Human

def say (name)

puts "Hello␣" + name

end
end
create instance and method call

32

naruto = Human.new

naruto.say "Sasuke"

Also, Ruby introduced a module, there by enabling flexibility enhancements to a single

inheritance-based object system. The module is the feature that can define methods like

class, but not be instantiated. A module provides the function of the module to the class by

include expression. The following example defines one module M and two classes C and

D. Module M defines say method and class C and D can utilized say method when includes

module M.

module M

def say(name)

puts "Hello␣" + name

end
end
class C

include M

end
class D

include M

end

Also to this feature, Ruby introduced instance-specific method; it is possible to define

a specific method for each object. The following example creates an instance of class

Human described in the above example, and defines instance-specific method say twice to

obj. And using an instance-specific method, we can redefine the methods already defined

in the class. This feature is similar to the feature that is contained by prototype-based

object-oriented languages, such as SELF[49] and JavaScript[16].

obj = Human.new

def obj.say twice(name)

self.say name

self.say name

end

33

Block, closure
In Ruby, we can pass the piece of code, in the form of a block, to a method. This block is

called a Proc object; it is as same as the closure in functional languages.

Block is the piece of code that is enclosed in curly braces (or do-end). And the argu-

ments for a block is described as |a|. And the block that has been passed to the method is

invoked by the yield statement.

Block has two kinds of variables, one is a block local variable, which is defined in

the block, and another is a method local variable, which can be accessed during method

execution.

In Ruby, the block is treated as a Proc object, and block and Proc object can be inter-

conversion. The block converted from Proc object always accesses both the block-local

variables and the method-local variables. In other words, a block can treated as lexical clo-

sures. The following example creates Proc object in counter method, and this Proc object

binds the argument num and bounded environment can be referenced from

Blocks that have been converted into Proc objects can reference block local variables,

the method local variables always. That Proc object has a property as lexical closures. For

example, in the following program, counter method generates Proc object that binds the

argument num, constrained environment can be referenced from outside of the method.

def counter(num)

Proc.new {
num += 1

}
end
c = counter(0)

c.call # −> 1

c.call # −> 2

c2 = counter(0)

c2.call # −> 1

Block is used in various situations in the Ruby program. And a block is used in a variety

of scenes in the Ruby program to implement iteration. Ruby programmer prefers using a

34

block to implement iteration to using while statement or until statement. 1 For example,

we use a block to implement iteration of the reputation for each element of the array object

or range object using each method defined in each class. Each method invokes given block

for each element.

[1, 2, 3].each{|e| ... }
(1..3).each{|e| ... }

The following example shows the definition Range.each method and usage of Range.each

method.

Range class and Range.each method
class Range
def each(&block)

i = self.begin
last = self.end
while (i < last)

block.call(i)
i+=1

end
end
end
the sum from 1 to 20
sum = 0
(1..10).each {|i| sum += i }
(11..20).each {|j| sum += j }

Figure 4.1: Definition of Range.each method and a toy program which use block

Garbage collection
In Ruby, explicit memory management is not required. Unused objects are collected auto-

matically by garbage collection.

Dynamic code loading
In Ruby, the definition of classes and the definition of methods are performed at runtime

1for statement is available in Ruby. And for statement is a syntactic sugar for invoking each method.

35

and both definitions can redefine at runtime. Furthermore, Ruby has an eval method that

evaluate the string as Ruby program at runtime.

In Ruby, there are three types of eval methods. First, the class eval method is the eval

method for classes. The class eval method evaluates the program in the context of the

class expression. The second one is instance eval method that evaluates the program with

specified object. And the third one is the eval method that evaluates the program with

specified runtime environment. The following example shows the usage of each three eval

methods.

puts 10 + 20 # −> 30

re−define Fixnum.+ method using class eval

Fixnum.class eval <<−TEXT

def +(n)

self − n

end
TEXT

puts 10 + 20 # −> −10

n = "Hello"; m = "World"

define String.foo method using eval

eval <<−TEXT

def String.foo(n)

self + n.to i

end
TEXT

puts n.foo 2 # −> Hello2

puts m.foo 2 # −> Hello2

define instance−specific method n.foo

using instance eval

n.instance eval <<−TEXT

def self.+(n)

self ∗ n.to i

36

end
TEXT

puts n.foo 2 # −> HelloHello

puts m.foo 2 # −> Hello2

These toy programs will not be used in a practical program. However, it is necessary

to implementing meta-programming feature such as rewriting already defined methods and

adding logging function.

Extension library
Ruby has many libraries and using these libraries, the programmers easily implement com-

plex software. CRuby has a feature to use a library written in the C language from Ruby.

This feature enables the programmer to implement connecting database or handling images

easily.

4.1.4 Ruby implementation

The development of the implementation of Ruby is started from 1993 by Yukihiro Mat-

sumoto. Also, many developers and researchers have been tackled to speed up the Ruby

implementation. In this section, we describe the Ruby implementations to improve the

performance.

CRuby

The reference Ruby implementation is called CRuby, which is written in C language. Cur-

rent stable version is version 2.2.

In an early stage of development, CRuby used an interpreter that traverse abstract syn-

tax tree and evaluates each node. And CRuby uses its conservative mark-sweep garbage

collector for memory management.

In addition to this, CRuby has high portability and the implementation of CRuby con-

sidered to use assembler not as much as possible. CRuby uses assembler to implement

garbage collector, and this assembler code is used to support the architecture-depended

feature.

37

Ruby can run on Linux, Mac OSX, Windows, and FreeBSD. However, the feature that

strongly depends on the environment is not available or limited.

CRuby is also characterized to be able to write the extension library written in C lan-

guage easily. To utilize the capabilities of Ruby implementation, CRuby has Ruby C API.

Using Ruby C API, the functions written in C language can invoke from Ruby program as

a Ruby method. This method that has been written in the C language and calls from Ruby

program is called the native method.

Libraries for extending Ruby using Ruby C API is called C extension library. In CRuby,

as mentioned above, there are many C extension libraries (including handling image pro-

cessing library, database) to implement image processing system or database management

system.

Since the program size of Ruby program has been increases, the speed of the interpreter

becomes the bottleneck. To solve this problem, the some developers implement the byte-

code interpreter[51, 44], and other developers implement another implementation of Ruby

to tackle this problem[31, 28, 41, 42].

And since CRuby 1.9, CRuby uses a stack-based virtual machine interpreter, called

YARV. YARV compiles the Ruby program into YARV bytecode at runtime. To compile the

Ruby program, YARV divides the program into four code fragments (top-level expressions,

class definitions, methods, and blocks) and each code fragments are treated as the basic

unit for compilation. For example, YARV compiles the Ruby program shown in Figure4.1

1 to bytecode shown in Figure4.2. In Figure4.2, each bytecode indicates (1) top-level

expression, (2) two blocks, (3) each method. Each bytecode is executed in order from the

bytecode of top-level expression. And bytecode for “Range.each” method is executed by

“send” instruction at the top-level expression. At this point, each block is passed as an

argument to a method.

Other Ruby Implementation

In recent days, to improve the execution speed of CRuby, JRuby uses Java languages to

construct the Ruby implementation. JRuby is built on Java Virtual Machine[32] and can

work in the environment that works other Java applications. And IronRuby[28] is an-

other Ruby implementation for .NET framework. IronRuby uses the Dynamic Language

38

class Range!
def each(&block)!
 i = self.begin!
 last = self.last!
 while (i < last)!
 block.call(i)!
 i+=1!
 end!
end!
end!
sum = 0!
(1..10).each {|i| sum += i }!
(11..20).each {|j| sum += j }!

!!"#$%&'""""""""""""("
!)"*+#,-.'&#/01/234)526/0/!/7/"
!8"9'#:,&%:/01//;7//!")"

!<"#$%&'""""""""""""("
!="#$%&'""""""""""""("

!>"*+#,-.'&#""""""""(??(!"
(("9'@A"""""""""""""BCAD'%&EF"%$G&D!F"-:,&H("
(8"*,*"

(I"#$%&'""""""""""""("
(J"*+#,-.'&#""""""""(!??)!"

)!"9'@A"""""""""""""BCAD'%&EF"%$G&D!F"-:,&H)"
))"*,*"
)8":'%K'"

!L"*+#9':M"
!<",*#/9'@A/9CB*:'""BCAD-'GC@F"%$G&D!"
!="9'#:,&%:/01//;7//!"8"

(("*+#9':M"
()",*#/9'@A/9CB*:'""BCAD:%9#F"%$G&D!"

(L"9'#:,&%:/01//;7//!")"
(J".+B*"""""""""""""88"
)!"*+#@C:"

)("*,*"
))".+B*"""""""""""""88"

)I"G'#:,&%:/01//;7//!"L"
)J"G'#:,&%:/01//;7//!"8"
8!",*#/9'@A/9CB*:'""BCAD&%::F"%$G&D("

8)"*,*"
8<"G'#:,&%:/01//;7//!"8"
8="G'#:,&%:/01//;7//!")"

8>",*#/:#"""""""""""BCADNF"%$G&D("
L("-$%@&ECM""""""""")L"

L8"*+#@C:"
LI":'%K'"

!"#$%&'()*+*)$,

!-#$./01*2*/34,

!!"#$%&'"""""""""""")<I"
!)"#$%&'""""""""""""("
!L"G'#:,&%:/01//;7//(")"

!I"G'#:,&%:/01//;7//!")"
!J",*#/*:+9"""""""""BCADOF"%$G&D("

(!"A+*"
(("9'#:,&%:/01//;7//(")"
(8"#$%&'""""""""""""<()"

(<":'%K'"

!!"#$%&'"""""""""""")<I"
!)"#$%&'""""""""""""("
!L"G'#:,&%:/01//;7//(")"

!I"G'#:,&%:/01//;7//!")"
!J",*#/*:+9"""""""""BCADOF"%$G&D("

(!"A+*"
(("9'#:,&%:/01//;7//(")"
(8"#$%&'"""<(("

(<":'%K'" !5#$6)&37,

Figure 4.2: Bytecode for Figure4.1

Runtime[14] that is the library to support to implement the dynamic-typed language that is

built on Common Language Runtime[13].

The advantages of these implementations are that they can utilize these existing pro-

gramming language environment and can be utilized rich program resources available in

Java or C#. Moreover, because the features of Ruby such as threads and garbage collection

are available in these language environments, there is no need to implement newly.

On the other hand, in this implementation, there is a disadvantage point such as the

resolution of the gap between sthese programming environments and the Ruby language is

difficult or impossible.

For example, Java virtual machine provides functions to enough to run the Java lan-

guage. However, it requires a significant cost to implement the feature that is far away

from the feature that can be written in Java language. In addition to these implementations,

Rubinius[41] and Topaz[21] have been developed independently, respectively. Rubinius

is a meta-circular interpreter of Ruby language and is mainly written in Ruby. Rubinius

convert Ruby program into own intermediate language and convert it to native code using

LLVM compiler framework[35]. And Topaz is another implementation of Ruby language

written in RPython, a subset of Python programming language. Topaz project uses PyPy[9]

to derive a trace-based JIT compiler.

39

4.2 Problem

In this section, we describe the problems to building a high-performance Ruby implemen-

tation.

As mentioned above, Ruby is a dynamically typed object-oriented programming lan-

guage. In the Ruby program, because of the feature of dynamic typing, the programmers

need not to specify the type of variables, methods, and expression. And this is why Ruby

program is difficult to analyze the types precisely in a short time. The dynamic type system

needs runtime overheads include a runtime type checking and dispatch the execution by the

types.

In addition to these overhead, in Ruby, the definition of classes and methods are ex-

ecuted at runtime and as described in Section 4.1.3, the Ruby programmer can re-define

classes and methods at runtime. This eval feature makes it difficult to analyze before exe-

cuting the Ruby program. Because there is no guarantee that will not be re-defined meth-

ods, we cannot simply adopt the traditional compiler optimization techniques (e.g. constant

folding and loop invariant code removal).

The next chapter discusses the techniques used in this work to implement a high-

performance Ruby implementation.

4.3 Implementation

In this chapter, we provide the implementation details of RuJIT, our trace-based JIT com-

piler for CRuby. the source code of RuJIT can be found at https://github.com/

imasahiro/rujit. RuJIT is based on existing implementation of YARV, the interpreter

of CRuby, and we use CRuby’s runtime other than YARV without any modification. RuJIT

records the execution path that YARV performed and constructed a trace from the path.

RuJIT does not use YARV bytecode but using newly designed low-level intermediate rep-

resentation, called LIR to construct the trace. And RuJIT adopts compiler optimizations

and after that, RuJIT generates machine code.

40

4.3.1 Overview of RuJIT

We implemented a new software component, a trace-based JIT compiler into YARV. Fig-

ure4.3 is an overview of the entire system. RuJIT contains four components; (1) trace

selection engine that forms and dispatches a trace. (2) IR generator, which convert from

YARV bytecode into an IR (intermediate representation) of RuJIT. (3) Optimizer that opti-

mize LIR instructions. (4) Native code generator. (5) Trace cache that manages compiled

traces.

!"#$%

&'()*%+*,*)-./0%
102.0*

!"#$%&!"'()*+,

-!"./&!"'()*+,

34-.5.6*' 7#%8*0*'(-/'

)'012+,

9/:*%8*0*'(-/'

%345+,
51*6)7+,

89%

3+("3', ;(-.<*%
9/:*

&'()*%

9()=*

Figure 4.3: A overview of RuJIT

The tracing selection engine is driven by the execution of bytecode at YARV. We modi-

fied YARV to call the tracing selection engine at each bytecode execution. The trace selec-

tion engine uses NET strategy to selecting which sequence of bytecode compiles, record

execution path, and invoke compiled traces.

When RuJIT detects potential trace head by using NET strategy, RuJIT is switched into

record mode. In the recording mode, the tracing selection engine records all execution

information includes a result of method search and type checking. This information is

stored as a part of an intermediate representation.

When the trace selection engine formed a trace, we optimize a trace. We use following

optimization set to optimize a trace, constant folding, and invariant code hoisting, and

optimization described in Section 4.4. After an optimizer optimizes a trace, RuJIT compiles

a trace, it puts the entry point address of the compiled code in the trace cache and the

process of the compiling a trace is completed.

Next section shows a concrete example of the trace compilation.

41

4.3.2 Compiling YARV to RuJIT IR

When RuJIT is on the record mode, RuJIT records the execution path of YARV bytecode

instructions and translates to LIR instructions. In this section, we describe how to translate

YARV bytecode instructions to LIR instructions and translate LIR instructions to machine

code using a running example. Our example program computes the 1st-100th number in

Fibonacci sequence using a loop.

a, b = 0, 1
while b < 100

a, b = b, a+b
end

Figure 4.4: Toy program that computes the 1st - 100th number in Fibonacci sequence using
loop.

0002 putobject 0

0003 putobject 1

0004 setlocal a

0006 setlocal b

0010 putobject 100

0012 setlocal x

0016 jump 36

0018 putnil

0019 pop

0020 jump 36

∗0024 getlocal a

∗0026 getlocal b

∗0028 getlocal a

∗0030 opt plus <callinfo!mid:+, argc:1>

∗0032 setlocal a

∗0034 setlocal b

∗0036 getlocal a

42

∗0038 getlocal x

∗0040 opt lt <callinfo!mid:<, argc:1>

∗0042 branchif 24

0044 putnil

0045 leave

At first, RuJIT compiles this program into YARV bytecode instructions.

During the execution of these bytecode instructions, RuJIT detects that the bytecode

instruction on line 11 as a potential trace head. In record mode, RuJIT records the execution

path of the bytecode on line 11-20 and generate the following trace.

Trace1:

∗BasicBlock BB0

local variables:

[]

code:

0000 Jump TargetBB:bb:1

∗BasicBlock BB1

local variables:

[(0, 3)=0019,(0, 4)=0018,(0, 2)=0021]

code:

getlocal a

0002 EnvLoad Level:0 Index:3

0003 StackPush Val:0002

getlocal b

0004 EnvLoad Level:0 Index:4

getlocal x

0021 EnvLoad Level:0 Index:2

opt plus <callinfo!mid:+, argc:1>

0005 StackPush Val:0004

0007 StackPush Val:0002

0008 GuardTypeFixnum pc:0x7feee35630a0 R:0004

43

0009 GuardTypeFixnum pc:0x7feee35630a0 R:0002

0010 GuardMethodRedefine pc:0x7feee35630a0 Fixnum.+

0025 GuardMethodRedefine pc:0x7feee35630a0 Fixnum.<

0011 StackPop

0012 StackPop

0013 FixnumAddOverflow LHS:0004 RHS:0002

setlocal a

0016 EnvStore Level:0 Index:3 Val:0013

0017 StackPop

setlocal b

0018 EnvStore Level:0 Index:4 Val:0002

opt lt <callinfo!mid:<, argc:1>

0020 StackPush Val:0016

0022 StackPush Val:0021

0023 GuardTypeFixnum pc:0x7feee35630f0 R:0016

0024 GuardTypeFixnum pc:0x7feee35630f0 R:0021

0026 StackPop

0027 StackPop

0028 FixnumLt LHS:0016 RHS:0021

branchif 24

0031 GuardTypeNil pc:0x7feee3563110 R:0028

0032 Jump TargetBB:bb:1

snapshot:

VM stack snapshot at pc=0x7feee35630a0: [0002, 0004, 0006];

VM stack snapshot at pc=0x7feee35630f0: [0019; 0021];

VM stack snapshot at pc=0x7feee3563110: [];

−−−−−−−−−−−−−−−

The recorded trace (Trace1) consists from two basic blocks (BasicBlock BB0 and BB1)

and contains three exit points and VM stack snapshots. And we realize that this trace only

covers the execution path of integer addition and integer comparison, and when we execute

any other execution path, guards fail.

44

After optimization, the trace is translated to machine code. As mentioned above, RuJIT

uses C compiler as a native code generator. RuJIT first translates the trace to C code and

then translate to machine code. The following code show how the LIR is translated to C

code.

trace side exit handler t ∗
ruby jit 0(rb thread t ∗th, rb control frame t ∗reg cfp)

{
VALUE v2, v4, v21, v11, v12, v13;

VALUE v16, v18, v28;

L 0:

// 0000 Jump TargetBB:bb:1

goto L 1;

L 1:

// 0002 EnvLoad Level:0 Index:3

v2 = ∗(GET EP() − 3);

// 0004 EnvLoad Level:0 Index:4

v4 = ∗(GET EP() − 4);

// 0021 EnvLoad Level:0 Index:2

v21 = ∗(GET EP() − 2);

// 0008 GuardTypeFixnum pc:0x7feee35630a0 R:0004

if(!(FIXNUM P(v4))) goto L exit0;

// 0009 GuardTypeFixnum pc:0x7feee35630a0 R:0002

if(!(FIXNUM P(v2))) goto L exit0;

// 0010 GuardMethodRedefine pc:0x7feee35630a0 Fixnum.+

if (!JIT OP UNREDEFINED P(0, 1)) goto L exit0;

// 0025 GuardMethodRedefine pc:0x7feee35630a0 Fixnum.<

if (!JIT OP UNREDEFINED P(7, 1)) goto L exit0;

// 0013 FixnumAddOverflow LHS:0004 RHS:0002

v13 = rb jit exec IFixnumAddOverflow(v4, v2);

// 0016 EnvStore Level:0 Index:3 Val:0013

∗(GET EP() − 3) = v13;

45

v16 = v13;

// 0018 EnvStore Level:0 Index:4 Val:0002

∗(GET EP() − 4) = v2;

v18 = v2;

// 0023 GuardTypeFixnum pc:0x7feee35630f0 R:0016

if(!(FIXNUM P(v16))) goto L exit1;

// 0024 GuardTypeFixnum pc:0x7feee35630f0 R:0021

if(!(FIXNUM P(v21))) goto L exit1;

// 0028 FixnumLt LHS:0016 RHS:0021

v28 = rb jit exec IFixnumLt(v16, v21);

// 0031 GuardTypeNil pc:0x7feee3563110 R:0028

if(!(RTEST(v28))) goto L exit2;

// 0032 Jump TargetBB:bb:1

goto L 1;

// side exits

L exit0:; // pc=0x007ff6f352a4c0

SET PC(0x007ff6f352a4c0);

PUSH(v4);

PUSH(v2);

return TRACE GUARD FAIL;

L exit1:; // pc=0x007ff6f352a510

SET PC(0x007ff6f352a510);

PUSH(v16);

PUSH(v21);

return TRACE GUARD FAIL;

L exit2:; // pc=0x007ff6f352a530

SET PC(0x007ff6f352a530);

return TRACE GUARD FAIL;

}

Finally the generated machine code and the recorded trace are stored in the trace cache,

and the compilation process is completed.

46

4.3.3 Trace Selection Engine

The trace selection engine is driven by the execution of each bytecode at YARV. Along the

algorithm shown in Figure4.5, a trace selection engine selects and invokes a trace. Our

trace selection algorithm uses NET strategy. It first determines potential trace head and

then records the next execution starting from the trace head as trace.

A trace selection engine first selects a candidate of a trace head with following two

conditions. (Figure4.5 Lines 15-16, 11-12)

• backward branch

• the exit point of an already formed trace

The first condition indicates that each time a backward branch instruction is executed,

the target of a taken backward branch is nominated as a trace head. This condition ap-

proximately detects a loop without building a control flow graph. The second condition

indicates that when an execution of a compiled trace is aborted because guards (checks)

for validation for the speculation that is constructed at compile time, is failed the resume

point from a trace is nominated as a trace header. In this way, the trace selection engine

can record uncovered execution path and which achieve high coverage for the JIT compiled

code.

The trace selection engine assigns a counter for each nominated trace heads and records

execution count of each potential trace heads. When this counter reaches a predefined

threshold, the trace selection engine starts to record a trace. (Figure4.5. Lines 17-21)

4.3.4 Trace Recording

In the recording mode, the trace selection engine records all bytecode instructions executed

in YARV, including type checking, method invoking, and branch instruction. This infor-

mation is recorded to the trace as IR and type checking and invoking method is converted

to a guard instruction. Figure4.6 shows how the trace selection engine convert opt plus

instruction into IR.

To reduce the overhead of driving the trace execution engine at non-recoding mode,

we add new YARV instruction, which embedded the process for recording the execution

47

path. (Figure4.6 lines 12-30) And when the trace selection engine becomes the recording

mode, YARV switches from the interpreter mode (Figure4.6 lines 1-11) to the record mode

to record a trace. Note that R recv, R obj are variables for RuJIT’s IR.

1 void trace selection(Program Counter PC) {
2 if (mode == Record) {
3 if (Satisfy dtrace termination condition) {
4 mode = Default;
5 Compile trace
6 }
7 return;
8 }
9 if (code = FindCompiledCache(PC)) {

10 Invoke compiled trace
11 if (Exit from side exit)
12 Mark PC as trace head
13 return;
14 }
15 if (isBackwardBranch(e))
16 Mark PC as trace head
17 if (counter = FindTraceCounter(PC)) {
18 counter += 1;
19 if (counter > Threshold)
20 mode = Record;
21 }
22 return;
23 }

Figure 4.5: Trace selection algorithm

Trace Termination Condition

The trace selection engine records all YARV bytecode until one of the following trace

termination conditions is satisfied.

• a loop is found. i.e., execution reaches a trace head.

• the start of an existing trace is found.

• an exception is thrown.

• the recorded trace has become too long.

48

case opt plus:
VALUE recv = POP();
VALUE obj = POP();
if(typeof recv is Fixnum && typeof obj is Fixnum) {

if(Fixnum.+ is not redefined)
val = recv + obj;

else
Invoke Fixnum.+

} else { ... }
PUSH(val);
Dispatch next instruction

case opt plus on record:
VALUE recv = POP();
VALUE obj = POP();
VALUE val;
if(typeof recv is Fixnum && typeof obj is Fixnum) {

EMIT(GuardFixnum, R recv);
EMIT(GuardFixnum, R obj);
if(Fixnum.+ is not redefined) {

EMIT(GuardRedefine, Fixnum.+)
val = recv + obj;
EMIT(FixnumAddOverflow, R recv, R obj);
}
else

EMIT(GuardMethod, type of recv, R recv)
EMIT(InvokeMethod, recv.+, R recv, R obj)
Invoke Fixnum.+

} else { ... }
PUSH(val);
Dispatch next instruction

Figure 4.6: Bytecode instruction handler for opt plus

• call native method that we cannot include a trace

First condition stops the recording when a cyclic path is detected in the recorded trace.

The trace selection engine detects repetition when current program counter (PC) is already

recorded. And second condition stops the recording when current PC is same as the trace

head of already recorded traces.

From the point of view of performance, our trace selection engine uses a fixed length

buffer to record execution path. Third condition ended the recording because this buffer is

overflowed.

49

Third and Forth conditions stop the recording because YARV executes the instruction

that the trace selection engine cannot trace throwing an exception or calling native methods.

Note that to improve the coverage of the JIT-compiled code, we allow to include a part of

native method in traces. See Section 4.4.2 for details.

After the trace selection engine finish recording, code generator compiles a recorded

trace into native code (Figure4.5. line 5). And a compiled trace is putted in the trace cache

with the entry point address of the instruction of the compiled trace. Once the address of

trace head of the compiled trace becomes available in the trace cache, the trace selection

engine invokes the compiled trace when the execution reaches the instruction of trace head

(Figure4.5 lines 9-14).

4.3.5 RuJIT Low-level IR (LIR)

RuJIT uses the simple register-based low-level IR and does not use YARV bytecode di-

rectly.

RuJIT uses low-level IR, called LIR, to record each instruction that the trace recorder

recorded. YARV uses a stack-based high-level IR to represent Ruby program and focus to

ease of implementation and memory usage. But RuJIT newly designed register-based low-

level IR, called LIR, to represents the behavior of each executed YARV bytecode instruc-

tions. Each LIR instructions store the opcode, the result type, and one or more operands.

Table 4.1 lists all LIR instruction that RuJIT supported. The first group of instruc-

tion (e.g. GuardTypeFixnum, GuardClassMethod) represents guards, and these instructions

hold the snapshot of the VM stack at the time of the source YARV bytecode instruction exe-

cuted. And if the guards fail, RuJIT restores the VM stack using the snapshot and execution

leaves the trace and falls back to the interpreter.

The second group of instruction (e.g. FixnumAdd, FloatSub, StringAppend) represents

basic operation such as simple arithmetic and string operations. Because LIR instruction

set is based on YARV bytecode instruction set, LIR instruction contains the fine-grained

version of YARV bytecode instruction.

The third group of instructions represents the constant values. And the fourth group

of instructions represents method call and unconditional branch. Method invocation in

50

CRuby consists of two parts, the dynamic lookup and invoking method. RuJIT performs the

dynamic lookup at the time of recording the trace and emits the result as a guard instruction;

then it emits the instruction for method invocation.

The fifth group of instructions represents the VM stack operation. In general, we avoid

writing the value back to the VM stack. On the other hand, when we invoke a method

that CRuby from a trace, we need to maintain the consistency of the VM stack between

the interpreter and a trace. We use StackPush and StackPop instructions to maintain the

consistency of the VM stack.

The final group of instruction is meta instructions that correspond to the optimiza-

tion. PHI instructions correspond to phi instructions from static single assignment (SSA)

form[15]. Because some optimizations such as loop-invariant code motion, RuJIT use, are

assumed that the target of optimization is SSA form, we use PHI instruction to encode the

semantics in SSA form.

4.4 Trace Optimizations

After RuJIT completes the recording of the trace, RuJIT performs optimizations that in-

clude constant folding, duplicated guard removal, dead code elimination, and heap alloca-

tion removal using escape analysis[12]. In addition to this optimization, to optimize the

trace more aggressively, RuJIT performs type inference to provide the concrete types and

shapes of program variables.

The following section describes two optimizations that we adapt to RuJIT and our type

propagation system.

Constant Folding

In RuJIT, we use constant propagation to optimize the expression that can be computed at

compile time. RuJIT has prepared patterns of instruction sequences, and RuJIT compare

these patterns and the instruction sequence, to perform the optimization. Table 4.2 shows

the part of the pattern of instruction sequences that RuJIT perform constant propagation.

51

4.4.1 Redundant guard removal

In common case, a recorded trace contains many guards. Redundant guard removal re-

moves guards that have already appeared and thus redundant do not to be checked again.

Following example code shows redundant guard removal can remove a guard.

The guard g3 on line 6 can be removed since the type of v3 is known. And the guard

g2 on line 5 can be removed since it is identical to the guard on line 2.

g0 = GuardTypeString v1
g1 = GuardTypeString v2
v3 = StringAdd v1, v2

g2 = GuardTypeString v1
g3 = GuardTypeString v3
v4 = StringAdd v1, v3

In RuJIT, we adopt this optimization to type checking guard and object property guard

to remove the redundant guard.

Escape Analysis

Reducing the number of the objects allocating on heap leads lower runtime overhead of

garbage collection. If the objects are used only the trace and there is no other outside

reference to them, we can remove the allocation of these objects. This optimization is

based on escape analysis[12].

As a result, we can assign the object as a stack-allocated variable or scalar value, and

we obtain the advantage such as increasing the opportunity to perform other optimization.

We implement this optimization using a standard data flow analysis. We optimistically

removing every memory allocations and only perform them when leaving the trace or the

point that the trace needs to create a reference to the object.

The following code illustrates how we rewrite the trace. If an object is allocated on the

trace, but may escape from the trace because the object is referred at side exits, and then

we inserts an object allocation at side exits.

52

(A) before escape analysis and stack allocation
bb0:

c0 = LoadConstFixnum 10
c1 = LoadConstFixnum 20
v0 = AllocArray c0, c1
...
g2 = GuardMethod Array.length # goto side exit:
v1 = ArrayLength v0

side exit:
v2 = StackPush v0 # escape v0
TraceExit

(B) after escape analysis and stack allocation
bb0:

c0 = LoadConstFixnum 10
c1 = LoadConstFixnum 20
v0 = AllocArray c0, c1
...
g2 = GuardMethod Array.length # goto side exit:
v1 = ArrayLength v0

side exit:
v2 = AllocArray v0 # escape v0
TraceExit

Type Propagation

To detect non-trivial case that redundant guard removal can remove and to support addi-

tional type specialization, we adopt type inference to determine the types of various vari-

ables in the trace.

We performed type propagation using a standard forward data flow formulation. This

type propagation is achieved by predicting what types of LIR instructions will produce,

type checks based on guard instructions in two steps.

Figure4.7 shows the type lattice used by the type inference algorithm.

The least precise type is Object, which represents the Ruby Object type, and all symbols

belong before type inference. The most precise type is untyped but unsound. We first

initialize the return type of each instruction to untyped. And because the global variables

are not supported in the current implementation, the types of global variables are initialized

to Object.

53

!"#

$%&'()

*"+,-.

/0012 3,)'4'0 566#'1, 7)0",4
!"

*#61)

5"4,-.

-,)28'9

Figure 4.7: Type lattice used by our type inference algorithm

Next, we propagate the type of each instruction using a standard forward iterative data-

flow algorithm that stops when we have reached a fixed point. We compute a new type of

the output of each instruction based on the type of its inputs, such as guard, function call,

load/store operation of local variables, among others. The algorithm completes when the

type of each instruction has not changed. Using the computed type information, RuJIT can

eliminate redundant guard and support additional type specialization.

4.4.2 Trace Recording and Specialization

In this section, we describe two techniques that we introduce to reduce the runtime over-

head in RuJIT.

Speculative code motion for guard for block

As mentioned in Section 2.1, Ruby programmers often use a block to implement iteration

by invoking the block itself. The iteration is likely formed to a trace. To illustrate our

techniques, we demonstrate how to construct traces by using Figure4.8, a simplified version

of Figure4.1.

In Figure4.1, following the algorithm depicted in Figure4.5, the trace selection engine

forms a trace that contains the loop between lines 2-6 and the block B1 on line 8.

54

1 def each(&block)
2 while (A)
3 B
4 block.call(i)
5 C
6 end
7 end
8 each { B1; }
9 each { B2; }

Figure 4.8: simplified version of Figure4.1

The formed trace has a block guard that checks two blocks equality; one block comes

from an argument of each method, and another is B1, which is inlined into this trace. When

this guard fails, RuJIT transfers control to YARV (Trace 1A in Figure4.9).

Because the method “each” (on line 8 and line 9) takes different blocks (including B1

and B2, respectively), executing the trace with block B2 is always aborted by the block

guard for block B1. As the algorithm mentioned in Figure4.5, RuJIT forms a new trace,

Trace 1B, which includes the execution path from the aborted point to the invocation of the

block B2, and then links Trace 1B to Trace 1A.

The simplified example suggests that the transition between traces cause a significant

overhead at runtime. To reduce this overhead, we focus on the mostly immutability of

CRuby’s compiled code. Note that the “mostly” means the immutability is broken if the

block is modified at runtime.

In RuJIT, when a block guard aborts a trace, we form a child trace from the exit point

of the aborted trace (referred to as parent). We assume that blocks contained in the parent

trace are immutable. We apply an invariant code hoisting technique into a block guard to

reduce the transition between a parent trace and a child trace.

We use this code hoisting technique as a part of the link-time optimization for traces.

Our Invariant code hoisting is performed as the following steps. First, from blocks com-

monly appearing in parent and child trace, we select blocks for code hoisting that satisfy

the following conditions to ensure the immutability of the instruction sequence.

1. a block which has same name lexically and same start point of the live range of block

between traces.

55

2. parent trace, child trace, and blocks do not contain eval methods.

3. a block is not a target by rewriting from other objects when the trace is formed.

Each condition show (1) each traces inlined invocation of blocks, (2) block’s sequence

of instructions is not able to rewrite from others, (3) block is not rewrite from Binding

which is the object can rewrite runtime context and local variables at runtime.

When we found a nominated trace, we first duplicate each trace for the purpose of

deoptimization that is described later. And we replicate a parent trace from the entry point

to block guard. (Figure4.9 Trace2)

Second, we apply code hoisting to block guard and hoist this guard to the start point

of the live range of a block. (Figure4.9 Trace3). Finally, we obtain traces that reduce the

runtime overhead of block guards from the original traces.

Note that as mentioned above, this optimization assumes that block and its instructions

are immutable at runtime. We need to de-optimize these traces when an assumption is

no longer satisfied. For de-optimization, we replace these traces to the original version of

traces (Figure4.9 Trace 1A, Trace 1B)

!"#$%&

&'(

'

)

'(

*

!"#$%&

&'+

'+

*

!"#$%

$&"'%

!"#$%

$&"'%

!"#$%

$&"'%

()*+$,-% ()*+$,.%

!"#$%&

&'(

'

)

'(

*

!"#$%&

&'+

'+

*

!"#$%

$&"'%

!"#$%

$&"'%

!"#$%

$&"'%

'

)

!"#$%

$&"'%

()*+$/%

!"#$%&

&'(

'

)

'(

*

!"#$%&

&'+

'+

*

!"#$%

$&"'%

!"#$%

$&"'%

!"#$%

$&"'%

'

)

!"#$%

$&"'%

()*+$0%

Figure 4.9: Traces with block

56

Native method inclusion

In CRuby, to improve the performance, some methods are written in C language and com-

piled to native code before runtime. Especially, in CRuby, method of core classes such as

String and Array are written in C. Because these methods are not traceable by the trace

selection engine, we frequently form short traces and these traces causes runtime overhead

and low coverage for the JIT compiled code.

To improve the quality of the trace, we include native methods and convert iteration

methods to the Ruby program.

First, we include the native method call into the traces. We modified our trace termi-

nation condition to do not stop trace recording when YARV calls native methods that are

shown in Table 4.3. We select several native methods, which do not throw an exception

and do not write global variables. By allowing these native method calls in the traces, we

can reduce the overhead by generating longer traces. If it is possible to include this method

calls to trace a longer more interval trace covers, also can reduce runtime overhead due to

the transition between the trace and the interpreter.

In Ruby, to improve performance, iteration methods such as Range.each and Array.map

is written in C language. We need to include these iteration methods into the traces because

these methods frequently execute loops and in most case, these methods contain a trace

head. For this purpose, we write native methods shown in Table 4.4in Ruby to be able

to form a trace by the trace selection engine. Note that we re-implement some methods

because rewriting native method often causes the performance degradation. We choose

methods that are empirically frequently invoked.

4.4.3 Code Generation

After RuJIT performs optimizations, the last step of compiling process of RuJIT is to trans-

late LIR instructions to C code. We chose C language and C compiler as our compiler back-

end for the following reasons. First, C language is known as one of the fastest programming

languages, and it has a well-known highly optimized compiler. RuJIT uses GCC[17] to

compile the generated C code and uses many optimizations that GCC has. And the second

reason is that CRuby uses C language to implement itself, and we can share CRuby and

57

RuJIT implementations.

RuJIT translates LIR instructions to C code. Generated C code contains one function

for initializer and one or more functions for trace body.

• Initializer: Initializer establishes a connection with the trace and CRuby runtime.

Compiled traces share CRuby runtime with RuJIT. This runtime includes native func-

tions, methods, classes, and constants.

• Implementation: This function has the implementation of a converted trace. Each of

generated code contains one function that is translated from LIR instruction directly

and one or more functions that encode trace side exits.

The initializer function first initializes runtime information about RuJIT. The LIR in-

structions are represented as the C function. This function takes the runtime context of

YARV. If a guard fails, it writes back local variables and temporary variables appear in the

trace, and the execution falls back to YARV.

Most LIR instructions use the functions and the macros that are used in the imple-

mentation of YARV. Sharing implementation of LIR and YARV leads the improvement of

maintainability, and it reduces the development costs.

Note that at the time the early stage of development of RuJIT, we use only one thread

to record the trace and generate the machine code. However, when RuJIT construct a

large number of traces, because RuJIT generates the machine code using C compiler and

invoking C compiler leads huge overhead, we found that the machine code generation cause

a significant overhead at runtime.

To avoid this overhead, we run the machine code generation in parallel with the inter-

preter. That is, we prepared a dedicated thread for the machine code generation, and we

avoid the overhead due to the invocation of the C compiler.

When we are compiling a large number of recorded traces, it had been five times slower

than YARV. After the introduction of the dedicated thread for code generation, the ratio

of performance degradation comes to 1.2-2 times. We need to reduce more compilation

overhead because our JIT compiler still has performance degradation. As future work, to

reduce this overhead, we will plan to replace current code generator to our native code

generator described in Chapter 3.

58

4.5 Evaluation

This section evaluates RuJIT by comparing it to YARV. We evaluate the performance of

Ruby applications from the CRuby benchmark suite.

4.5.1 Experimental Setup

We ran benchmark application with the experimental environment listed below.

• CPU : Intel(R) CoreTM i7 2.2GHz

• Memory : 8GB, 1333MHz

• OS : MacOSX 10.9.5

• C compiler : Clang 3.5

We compare RuJIT to CRuby version 2.2-preview, and RuJIT uses the same version of

CRuby. To study the impact of the optimizations that are described above, we use clang

c compiler to translate IR from native code. Note that we use optimization level O3 for

clang.

To evaluate the performance, we use 36 micro-benchmarks from the CRuby benchmark

suite.

We first compare the performance of RuJIT and YARV. Next, we evaluate the per-

formance improvement by optimizations described in previous chapter. And finally, we

compare the performance improvement by type inference and the effectiveness of type in-

ference.

We use elapsed time that took to run the benchmark program by each system and the

elapsed time for RuJIT contains execution time for selecting trace and the execution time

of compilation.

4.5.2 Performance comparison

Figure4.10 shows the relative speed up of different RuJIT configuration with respect to

YARV. Throughout this section, we abbreviate the optimization techniques mentioned at

59

Section 4.4.2 as BLK, mentioned at Section 4.4.2 as MTD and type inference as IT. We

indicate the optimizations are enabled using +.

In Figure4.10, we see a speedup of 1.5 times through 5 times. And In app strconcat,

so benchmark of so random, our optimization techniques improve the coverage of JIT

compiled code and most code are compiled into native code and we see a speedup of 2

times through 5 times.

In contrast, in so reverse, so complement, and app lc fizzbuzz, RuJIT do not speedup

these benchmarks because these benchmarks heavily rely on operations that are not able to

contain to a traces such as file operation or closures. In addition to this, in some benchmarks

such as app fibo, RuJIT is slower than YARV because these benchmarks rely on recursive

call, and RuJIT currently do not support these features.

Note that in this experiment, we use clang for a native code generator of RuJIT. Com-

piling with clang contains the overhead such as translation IR to C program, read header

files, etc. Execution time of the benchmark programs used in this experiment contains these

overheads, and it is about 3% of the execution time on average. However, when we use a

tiny program for benchmark, we cannot ignore the overhead due to invoking clang.

4.5.3 Trace Length and Transition

Table 4.5 shows that RuJIT with MTD and RuJIT with MTD+BLK configurations with

the average of the length of traces and Table 4.6 shows the average of number of transition

between YARV and traces. Note that the length of traces is the number of instructions

contained in traces.

We see that, with RuJIT +MTD configuration, we take longer traces as compared to

the default configuration of RuJIT in benchmarks that contain invoking block and invoking

native method such as so nested loop, so matrix. When we see the number of transition in

these benchmarks, we observed that some benchmarks are increased the number of tran-

sition and others are decreased. This is because, applying MTD obtains longer trace but

introduce more transitions between interpreter and traces.

With RuJIT +MTD+BLK configuration, we see that benchmarks that contain invoking

blocks reduce the number of transition. On the other hand, the averages of trace length do

60

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

$"

)
*
*
+
)
,
-.

/
0"

)
*
*
+
)
1
2
/
,
34
"

)
*
*
+
/
02
"

)
*
*
+
5)
36
1
07
)
8"

)
*
*
+
9
2
"

)
*
*
+
83
+
9
::
2
;
::
"

)
*
*
+
<
)
,
=
/
82
01
6"

)
*
*
+
*
/
,
61
<
7,
1
"

)
*
*
+
0)
7-
/
"

)
*
*
+
-6
03
1
,
3)
6"

)
*
*
+
6)
>
"

)
*
*
+
6)
0)
7"

)
*
*
+
;
07
"

-1
+
)
00
)
?
"

-1
+
2
7,
)
0?
+
60
/
/
-"

-1
+
31
,
3)
6/
,
)
6/
"

-1
+
31
;
,
6+
.
1
0=
-"

-1
+
/
@3
/
*
A
1
,
"

-1
+
5)
,
,
>
;
34
"

-1
+
5)
-6
)
"

-1
+
>
+
,
;
38
/
1
A
=
/
"

-1
+
87
-6
-"

-1
+
<
)
,
=
/
82
01
6"

-1
+
<
)
60
7@
"

-1
+
<
/
6/
1
0+
31
,
6/
-6
"

-1
+
,
2
1
=
?
"

-1
+
,
/
-6
/
=
+
81
1
*
"

-1
+
,
-7
/
B
/
"

-1
+
,
-7
/
B
/
+
2
76
-"

-1
+
1
2
C/
36
"

-1
+
*
)
0A
)
8+
-;
<
-"

-1
+
*
7=
7D
76
-"

-1
+
0)
,
=
1
<
"

-1
+
0/
B
/
0-
/
+
31
<
*
8"

-1
+
-7
/
B
/
"

-1
+
-*
/
36
0)
8,
1
0<

"

!
"
#
$
EF
G
H
I
%
&
!
"
#
$
'
%
(
)
*
J+

FGHI"

H;KLM"

NMO"

NMOPQRS"

!
"
#$
%&
'"

()
"
*+
,
*-

$
.
/"

01
&2
3
"
*(
&4
(5
"
%%
"
*6
(

Figure 4.10: Performance comparisons between RuJIT and YARV

not change.

Note that RuJIT uses simple counters to detect hot spots from a program. And a thresh-

old for hotness counter determines when a particular region of code is considered hot. In

this section we show the relationship between the thresholds, program performance, and

the number of traces that are created.

In RuJIT, we uses two hotness thresholds. One for detecting hot trace and one for de-

tecting cold trace. Using the hot trace threshold, when the number of execution of potential

trace head is exceeded the threshold and RuJIT promotes a potential trace head to trace

head and starts trace recording. The cold trace threshold determines when the behavior of

the program changes and cold trace can detach.

Figure4.11 compares the relative speed up for each of our benchmarks compared to our

default thresholds. We select following benchmarks (so nbody, app aobench, nested loop,

61

erb, so list and nested loop , and mandelbrot) from Ruby benchmark suite and all bench-

marks were compiled with our optimizations. We tested three hot trace threshold Thh = (1,

2, 16) and three cold trace thresholds Thc = (0, 32, 50). We normalized performance of

each benchmark to our default configuration (Thh,Thh) = (2, 32).

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

)**+),-./01")**+.2-" 3,+45363" 3,+/-,78" 3,+/.36.7+4,,*" 3,+9)/7.4-2,6"

:
.
4)
;
<
.
"*
.
2=
,
29

)
/
0.
">
?
5@
1
.
2"
53
"-
.
A
.
2B
!

C1D"C0E>(DF$B"

C1D"C0E>DFB"

C1D"C0E>(&D"F$B"

C1D"C0E>(D"!B"

C1D"C0E>$D!B"

C1D"C0E>(&D"!B"

C1D"C0E>(D"&%B"

C1D"C0E>$D"&%B"

C1D"C0E>(&D"&%B"

Figure 4.11: Performance comparisons between different hot trace and cold trace thresholds

The benchmarks are sensitive to the hot trace threshold. And most of benchmarks in

Ruby benchmark suite are not sensitive to cold trace threshold because these benchmarks

construct only few traces and these traces cover most of the execution. And the perfor-

mance of nested loop benchmarks is heavily affected by both thresholds because If the

hot trace threshold is small, RuJIT generates more trace speculatively and more transition

between compiled trace and the interpreter.

Note that we need to clear optimal configuration of both thresholds and how to im-

plement each methods because these configuration determine the performance of each

62

application. However, there are no clearly optimal thresholds. Our default of configura-

tions including method implementation are appears from a reasonable choice but additional

benchmarks may suggest better configurations in the future.

4.6 Summary

In this chapter, we showed the design and implementation of our trace-based JIT, called

RuJIT built on top of CRuby interpreter. We show RuJIT achived on average about 2 times

faster than CRuby interpreter. RuJIT achived better compiled code performance using two

new optimization techniques to improve the quality of compiled trace. We also showed that

our techniques to reduce runtime overhead improved the performance of the trace-based

JIT.

63

Opcode return type Description
GuardTypeSymbol void Guard. The type of the given operand

is Symbol.
GuardTypeFixnum void Guard. The type of the given operand

is Fixnum.
GuardTypeNil void Guard. The given operand is nil.
GuardBlockEqual void Guard. The block given to the method

currently running is equal to the block
which is already recorded by RuJIT.

GuardMethodCache void Guard. The callee of method invoca-
tion is equal to the result of a method
lookup.

FixnumAdd Fixnum Fixnum + Fixnum
FixnumSubOverflow Fixnum or Bignum Fixnum - Fixnum. This instruction

consider the integer overflow/under-
flow.

StringAdd String String + String
ObjectEq Boolean Object == Object
GetProperty Object Load the property of a object.
SetProperty Object Store the property of a object.
LoadConstNil Nil Load nil.
LoadConstFixnum Fixnum Load fixnum constant.
LoadConstString String Load string constant.
InvokeNative Object Invoking the native method.
InvokeMethod Object Invoking the method.
InvokeBlock Object Invoking the block.
Exit void Exit from this trace and fall back

YARV interpreter.
FramePush Object Push the call frame to the VM stack.
FramePop Object Pop the call frame to the VM stack.
StackPush Object Push the VM stack.
StackPop Object Pop the VM stack.
PHI Object Denotes a phi node.
NOP void NOP

Table 4.1: Part of the list of LIR instructions

64

Rule Transformed LIR
v1 = FixnumAddOverflow c1 c2 v1 = LoadConstFixnum (c1 + c2)
v1 = FloatSub c1 c2 v1 = LoadConstFloat (c1 - c2)
c2 = LoadConstString c1
v1 = StringToFixnum c2 c2 = LoadConstFixnum c1.to i
v2 = StringAdd v1 c1
v3 = StringAdd v2 c2

c3 = (LoadConstFixnum (c1 + c2))
v2 = StringAdd v1 c3

v2 = GuardTypeFixnum PC c1
Type of c1 is Fixnum Remove v2.

v2 = GuardTypeString PC c1
Type of c1 is Fixnum Exit PC

Table 4.2: Part of the list of LIR constant folding rules. Constants c only match the in-
struction for constants and PC represents the exit point of the trace . Most instructions
for arithmetic and comparison can optimize with constant folding. But we cannot opti-
mize operations which have side effects including throwing exception and the VM stack
operations.

Fixnum -@, to f, +, -, *, <, <=, >, >=, !=, ==, &, |, ,̂ >>, <<
Float -@, to i, to f, +, -, *, /, %,>, >=, <, <=, !=, ==
Array [], []=, <<, +, -, &, |, uniq, to s, to a, at, fetch, first, last,

concat, push, pop, shift, unshift, insert, length, join, re-
verse, sort, clear, fill

String +, *, %, [], length, size, empty?, succ, next, upcase, down-
case, split, inculude?

Object new

Table 4.3: List of Ruby methods which RuJIT includes into trace

Enumerable find, find all, collect, map, reduce, all?, any?, one?,
none? each with index, inject, detect

Array each, each index, reverse each, index, rindex
Fixnum times, upto, downto

Table 4.4: List of Ruby methods which RuJIT reimplements

65

Name Trace Length
RuJIT

Trace Length
MTD

Trace Length
MTD+BLK

app answer 0.0 23.0 23.0
app aobench 0.0 47.6 48.4
app erb 0.0 12.0 11.0
app factorial 0.0 0.0 0.0
app fibo 0.0 0.0 0.0
app lc fizzbuzz 0.0 0.0 0.0
app mandelbrot 20.0 34.2 35.9
app pentomino 8.0 17.7 18.1
app raise 11.0 11.0 11.0
app strconcat 14.0 14.0 14.0
app tak 0.0 0.0 0.0
app tarai 0.0 0.0 0.0
app uri 14.3 65.0 70.0
so array 0.0 37.5 37.5
so binary trees 0.0 84.7 84.7
so concatenate 14.0 24.5 24.5
so count words 8.0 38.0 38.0
so exception 38.0 61.0 61.0
so fannkuch 15.0 26.0 26.0
so fasta 0.0 41.0 42.2
so k nucleotide 17.0 25.2 25.3
so lists 15.0 31.0 31.0
so mandelbrot 0.0 57.5 59.0
so matrix 0.0 21.6 23.1
so meteor contest 12.0 47.9 51.1
so nbody 34.0 60.8 60.8
so nested loop 0.0 28.2 28.2
so nsieve 11.0 27.0 27.0
so nsieve bits 0.0 37.1 38.5
so object 0.0 29.3 29.8
so partial sums 0.0 116.0 116.0
so pidigits 0.0 83.0 81.3
so random 43.0 43.0 43.0
so reverse complement 5.0 31.3 31.3
so sieve 0.0 30.5 30.1
so spectralnorm 0.0 79.9 80.1

Table 4.5: Trace Length
66

Name # of transition
RuJIT

of transition
MTD

of transition
MTD+BLK

app answer 0 2 2
app aobench 0 629146 201327
app erb 0 198 198
app factorial 0 0 0
app fibo 0 0 0
app lc fizzbuzz 0 0 0
app mandelbrot 2209661 591884 31875
app pentomino 1833360 833360 533360
app raise 0 0 0
app strconcat 2 2 2
app tak 0 0 0
app tarai 0 0 0
app uri 101016 60610 59397
so array 0 996 996
so binary trees 0 14286980 14286980
so concatenate 10 10 10
so count words 486381 632295 632295
so exception 249995 249995 249995
so fannkuch 650155 845202 845202
so fasta 0 2032838 1580781
so k nucleotide 32 179151 170049
so lists 401 451873 451873
so mandelbrot 0 2379060 1979060
so matrix 0 26403167 1240316
so meteor contest 38 9500356 8935619
so nbody 0 16801052 14801052
so nested loop 0 36909858 5913770
so nsieve 8257703 9601980 9601980
so nsieve bits 0 13453946 8745065
so object 0 2980035 2961110
so partial sums 0 1 1
so pidigits 0 910581 611763
so random 1 1 1
so reverse complement 940269 625007 625007
so sieve 0 4903982 3286996
so spectralnorm 0 16977280 9908118

Table 4.6: A number of transition between interprer and traces
67

Chapter 5

Related work

5.1 Just-In-Time Compilation

After the advent of Java, many researchers and implementor have been tackled in a number

of different ways over the years. A popular research compiler for Java is Jikes virtual

machine[1] and HotSpot VM[39]. It uses dynamic profiling to optimize code at runtime.

Since this compiler uses a method as compilation units, this compiler uses OSR technique

to replace the currently running method to new version of code.

On the other hand, it became a problem in terms of maintenance of the development of

JIT compiler. SableVM[18], ShuJIT[46], OpenJIT[38] use a very simple template-based

code generator to reduce the maintenance cost of developing JIT compiler.

Dynamo[5] was the first trace-based compiler to optimize programs at runtime. Dy-

namo formed a trace from machine code using a machine code interpreter. Dynamo only

works on the PA-RISC architecture. DynamoRIO[10] adapted Dynamo’s ideas and built an

optimization framework for Intel hardware. RuJIT uses similar trace selection algorithm

and trace management system by Dynamo.

Gal et al.[20] introduced a trace-based compiler for Java using trace trees. Their imple-

mentation is focused on low memory environment and is aimed at low memory usage than

execution performance. Their Trace formation technique, called trace trees, was adapted to

TraceMonkey (a JIT compiler for JavaScript).

Since TraceMonkey’s appearance, a trace-based JIT compiler is widely studies as a

68

JIT compiler for the dynamically typed language. For example, TraceMonkey[19] and

SPUR[6] for the JavaScript language, PyPy[9, 8, 3] for the Python language, and LuaJIT[40]

for the Lua language uses a trace-based compilation approach. These compilers use some

optimization techniques to optimize complex traces. PyPy uses escape analysis and redun-

dant guard removal, and SPUR uses loop unrolling and invariant code motion.

PyPy[9] is an implementation of the Python programming language. Using PyPy, the

programming language developers can derive an optimized interpreter from an interpreter

written in RPython, a statically typed language that has similar syntax with the Python

programming language. PyPy uses annotations to deriver a trace-based JIT compiler for

the interpreter. Using this approach, JIT compilers for other programming languages are

implemented, for example, Ruby[21], PHP[26].

SPUR is a trace-based JIT compiler for Common Intermediate Language (CLIR), and

Maxpath[7] is a trace-based JIT compiler for Java. Both SPUR and Maxpath use non-

optimizing compiler instead of an interpreter for baseline execution.

For Ruby, a method-based approach was studied. MacRuby[43] and Rubinius[41] have

method-based JIT compiler which use LLVM compiler infrastructure[35] as backend of

code generator. These system translate Ruby program to its own bytecode and convert

bytecode to native code by LLVM. And Ishii et al. [29] proposed a method-based JIT

compiler which extends CRuby runtime with its own code generator. Topaz is a trace-

based JIT compiler for Ruby that is based on PyPy. Compared to Topaz, RuJIT is based

on CRuby and is different from the point that RuJIT is able to use existing Ruby code or

extension library without any modification.

Inoue et al. [27] used an existing method-based compiler for Java and added a trace-

based JIT compiler. Their implementation uses similar optimization techniques which in-

clude native method invocation to traces. This approach is focused on Java and includes

methods that do not invoke GC, other Java method and do not throw an exception.

5.2 Ruby Virtual Machines

A number of existing projects target the fast implementation of Ruby language. YARV(Yet

Another Ruby Virtual machie)[44] is a stack machine based interpreter for CRuby. YARV

69

applied polymorphic inline cache to reduce the cost of method searching and uses direct

threading techniques in their interpreter to reduce the dispatch cost. Ishii et al.[29] built a

method-based JIT compiler based on YARV. They uses devirtualization techniques to al-

lows to replace generic method call sequences with static calls. In addition to this, to speed

up the execution speed of exception in runtime library, they remove redundant invocation

of setjmp function.[37]．Also, Ishii’s VM seems to be an internal research project only.

We have not been able to obtain it for comparative benchmarks.

Shiba et al.[45] proposed AOT compiler based on YARV. CastOff provide runtime pro-

filing and they use profiling information to convert YARV bytecode to machine code. To

reduce the overhead of invoking blocks, CastOff[45] uses inlining approach which inline

block to the caller (block inlining). CastOff applies block inlining to the method which is

written in C language and the programmer needs to implements the inline code by hand. In

contrast, our approach is focused to Ruby program and we are able to inline block without

any modification when both block and the caller is written Ruby language.

70

Chapter 6

Conclusions and Future Work

This thesis presented the implementations of JIT compiler for scripting languages. Con-

cretely, the prototypes we implemented have been applied to two scripting language, first

one is a method-based JIT compiler for statically-typed scripting language Konoha and

second one is a trace-based JIT compiler for a dynamically-typed scripting language Ruby.

We evaluate application of the method-based and the trace-based JIT compilation to

Konoha and Ruby and show that naive approach produces limited performance benefit.

Then we propose a novel approach to our JIT compiler. We use domain specific knowl-

edge including implementation of scripting language runtime and idioms which is heavily

used in program. Our optimization techniques produce greater benefit in benchmark ap-

plications. As future work, we want to analyze more in depth the behavior of large scale

applications to find another optimization opportunities to further improve the overall per-

formance of the system.

6.1 Method-based JIT for Konoha

In chapter 3, we described the design and implementation of our method-based JIT com-

piler for a statically-typed scripting language Konoha. Then we described our three opti-

mization techniques built on top of our JIT compiler. In our experiments, we show that

these optimization techniques remove the overhead of invoking runtime library’s method,

remove redundant stack operations, and accelerating field access. Then we show that the

71

performance improvement in the benchmark application which heavily use object creations

or method invocations because our optimization techniques not only optimize application

but also increase the opportunities for optimization within runtime library. Also, we com-

pared our JIT compiler to Java and C++ to reveal the performance gap between our JIT

and Java, C++. We observed that our JIT compiler has an approximate equivalence to the

performance in most of benchmarks. On the other hand, our implementation still has huge

performance gap between Java and C++ in memory allocation benchmark. As a future

work, we want to apply our optimization approach to other part of runtime library to find

another optimization opportunities in runtimes.

6.2 Trace-based JIT for CRuby

In chapter 4, we investigates new techniques to treat the performance for the interpreted

implementation of a dynamic language.

We describe application of the JIT compilation to CRuby. It works by recording the ex-

ecution path including the control flow of the interpreter and using results of type checking

and directions of conditional branch, it translates bytecode to highly optimized machine

code. Then we propose optimization techniques to improve the quality of trace (making

longer trace and fewer transition). These techniques produce greater benefit for the idiom

which Ruby programmer heavily used. In our experiments, we show that these two tech-

niques improve the coverage of traces: native method inclusion and invariant block guard

hoisting. And we showed a 1.5x through 5x performance improvement by using these two

methods.

Currently, the drawback of our implementation of the JIT backend is the relatively high

cost of the JIT compilation. This is due to increasing the number of the trace that is not

frequently execute and high compilation cost for each trace. As future work, we need to

explore the method of extracting frequently executing trace and the way to compile trace

with restricted resource usage.

72

Publications

Refereed papers

• Masahiro Ide, Kimio Kuramitsu. Just in time compiler for KonohaScript using

LLVM. IPSJ Transactions on Programming 6(1), 9-16, 2013

• Masahiro Ide，Kimio Kuramitsu. A Trace-based Just-In-Time compiler for

Ruby. IPSJ Transactions on Programming Vol. 8, No. 1, pp. 1-10, 2015

Refereed papers (co-author)

• 志田駿介，井出真広，倉光君郎．Mindstorms NXTを対象としたKonoha

処理系のコンパクト化．IPSJ Transactions on Programming 6(4), 1-9, 2013

Domestic conference (reviewed)

• 井出真広,志田駿介,倉光君郎．LLVMを用いた静的型付きスクリプト言
語 KonohaScriptの Just-in-timeコンパイラの設計と実装．先進的計算基盤
システムシンポジウム SACSIS, May 2012.

International conference (co-author)

• Takuma Wakamori. Masahiro Ide, Midori Sugaya, Kimio Kuramitsu. Recon-

figurable Scripting Language with Programming Risk. Workshop on Open Sys-

tem Dependability 2012, in conjunction with ISSRE2012, 2012.

Domestic conference

73

• 井出真広, 平岡佑太郎, 養安元気, 中田晋平, 菅谷みどり, 倉光君郎, 大規模
主記憶環境におけるGC方式の性能評価,情報処理学会第 83回プログラミ
ング研究発表会,京都, March, 2011

• 井出真広，倉光君郎，JavaScript 向け Ahead-Of-Time コンパイラの GCC

による実装，日本ソフトウェア科学会第 28回大会論文集, Sep, 2011

• 若森拓馬，井出真広，中田晋平，倉光君郎，プログラム解析情報を利用可
能なバイトコード操作器の設計と実装，第 84回プログラミング研究発表
会，June. 2011

• 井出真広，倉光君郎，コード評価器の実行時最適化を行う Just-in-timeコ
ンパイラの設計と実装，並列／分散／協調処理に関する『北九州』サマー・
ワークショップ SWoPP鹿児島 2011, July. 2011

• 養安元気，菅谷みどり，井出真広，倉光君郎,移動のない Incremental GC

におけるリアルタイム性評価,第 176回 SE・第 25回EMB合同研究発表会,

5月 2012年,東京.

• 内田 篤史, 養安 元気, 井出真広, 菅谷みどり, 倉光君郎, スクリプト言語
Konohaによるカーネル診断スクリプトの開発,ポスター,組込みシステム
シンポジウム 2012,東京, 10月, 2012年.

• 井出真広, 志田 駿介, 倉光 君郎，JavaScript生成言語への難読化処理の適
用と性能評価．情報処理学会第 94回プログラミング研究発表会 PRO94

• 志田駿介，井出真広，菅谷みどり，倉光君郎．Mindstorms NXTを対象
としたスクリプト処理系のコンパクト化．第 94回プログラミング研究発
表会 PRO94

• 石井正樹，井出真広，倉光君郎，アシュアランス駆動プログラミングに
向けて，情報処理学会プログラミング研究会 PRO94

• 石井正樹，小野田武朗，岡本悠希，井出真広，倉光君郎，GSNからの
実行可能なスクリプト生成の提案，情報処理学会プログラミング研究会
PRO96

74

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink,

D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The

jikes research virtual machine project: Building an open-source research community. IBM

Syst. J., 44(2):399–417, Jan. 2005.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink,

D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The

jikes research virtual machine project: Building an open-source research community. IBM

Syst. J., 44(2):399–417, Jan. 2005.

[3] H. Ardö, C. F. Bolz, and M. FijaBkowski. Loop-aware optimizations in pypy’s tracing jit.

In Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12, pages 63–72, New

York, NY, USA, 2012. ACM.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A Survey of Adaptive Optimiza-

tion in Virtual Machines. In PROCEEDINGS OF THE IEEE, 93(2), 2005. SPECIAL ISSUE

ON PROGRAM GENERATION, OPTIMIZATION, AND ADAPTATION, volume 93, 2004.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimization

system. SIGPLAN Not., 35(5):1–12, May 2000.

[6] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann, and H. Venter.

Spur: a trace-based jit compiler for cil. In Proceedings of the ACM international conference

on Object oriented programming systems languages and applications, OOPSLA ’10, pages

708–725, New York, NY, USA, 2010. ACM.

[7] M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, and M. Franz. Trace-based compi-

lation in execution environments without interpreters. In Proceedings of the 8th International

Conference on the Principles and Practice of Programming in Java, PPPJ ’10, pages 59–68,

New York, NY, USA, 2010. ACM.

75

[8] C. F. Bolz, A. Cuni, M. FijaBkowski, M. Leuschel, S. Pedroni, and A. Rigo. Allocation

removal by partial evaluation in a tracing jit. In Proceedings of the 20th ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation, PEPM ’11, pages 43–52, New

York, NY, USA, 2011. ACM.

[9] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-level: Pypy’s tracing

jit compiler. In ICOOOLPS ’09: Proceedings of the 4th workshop on the Implementation,

Compilation, Optimization of Object-Oriented Languages and Programming Systems, pages

18–25, New York, NY, USA, 2009. ACM.

[10] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic opti-

mization. In Proceedings of the International Symposium on Code Generation and Optimiza-

tion: Feedback-directed and Runtime Optimization, CGO ’03, pages 265–275, Washington,

DC, USA, 2003. IEEE Computer Society.

[11] M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal, M. Bebenita, C. Wimmer, and

M. Franz. The impact of optional type information on jit compilation of dynamically typed

languages. In Proceedings of the 7th symposium on Dynamic languages, DLS ’11, pages

13–24, New York, NY, USA, 2011. ACM.

[12] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis for java.

In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications, OOPSLA ’99, pages 1–19, New York, NY, USA,

1999. ACM.

[13] M. corporation. Common language runtime. https://msdn.microsoft.com/en-us/

library/8bs2ecf4.

[14] M. corporation. Dynamic Language Runtime. http://dlr.codeplex.com/.

[15] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing

static single assignment form and the control dependence graph. ACM Trans. Program. Lang.

Syst., 13(4):451–490, Oct. 1991.

[16] ECMA. ECMAScript Language Specification (Standard ECMA-262). Third edition, Dec.

2011.

[17] Free Software Foundation. GCC home page. http://gcc.gnu.org/.

[18] E. M. Gagnon and L. J. Hendren. Sablevm: A research framework for the efficient execu-

tion of java bytecode. In Proceedings of the 2001 Symposium on JavaTM Virtual Machine

Research and Technology Symposium - Volume 1, JVM’01, pages 3–3, Berkeley, CA, USA,

2001. USENIX Association.

76

[19] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,

G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,

M. Chang, and M. Franz. Trace-based just-in-time type specialization for dynamic languages.

In Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and

implementation, PLDI ’09, pages 465–478, New York, NY, USA, 2009. ACM.

[20] A. Gal, C. W. Probst, and M. Franz. Hotpathvm: an effective jit compiler for resource-

constrained devices. In VEE ’06: Proceedings of the 2nd international conference on Virtual

execution environments, pages 144–153, New York, NY, USA, 2006. ACM.

[21] A. Gaynor. Topaz. https://github.com/topazproject/topaz.

[22] Google. V8 JavaScript Engine. http://code.google.com/p/v8/.

[23] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundaresan. Javatm just-in-time

compiler and virtual machine improvements for server and middleware applications. In Pro-

ceedings of the 3rd Conference on Virtual Machine Research And Technology Symposium -

Volume 3, VM’04, pages 12–12, Berkeley, CA, USA, 2004. USENIX Association.

[24] D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region selection in dynamic opti-

mization systems. In Proceedings of the 38th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 38, pages 141–154, Washington, DC, USA, 2005. IEEE Com-

puter Society.

[25] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic deopti-

mization. In Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language

Design and Implementation, PLDI ’92, pages 32–43, New York, NY, USA, 1992. ACM.

[26] A. Homescu and A. Şuhan. Happyjit: A tracing jit compiler for php. In Proceedings of the

7th Symposium on Dynamic Languages, DLS ’11, pages 25–36, New York, NY, USA, 2011.

ACM.

[27] H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. A trace-based java jit compiler retrofitted

from a method-based compiler. In Proceedings of the 9th Annual IEEE/ACM International

Symposium on Code Generation and Optimization, CGO ’11, pages 246–256, Washington,

DC, USA, 2011. IEEE Computer Society.

[28] IronRuby community. IronRuby. http://ironruby.net/.

[29] N. Ishii, S. Murata, Y. Chiba, and N. Doi. An implementation of a dynamic compiler for ruby.

IPSJ Transactions on Programming, 4(1):109–122, mar 2011.

[30] ISO/IEC. ISO/IEC 30170:2012 Information technology - Programming languages Ruby.

2012.

[31] JRuby community. JRuby. http://jruby.org/.

77

[32] H. JVM. Java version history (j2se 1.3). http://en.wikipedia.org/wiki/Java_

version_history.

[33] K. Kuramitsu. Konoha - implementing a static scripting language with dynamic behaviors. In

Workshop on Self-sustaining Systems 2010, S3, The University of Tokyo, Japan, September

2010.

[34] S. M. Laboratories. Benchmarking java with richards and deltablue. http://labs.oracle.

com/people/mario/java_benchmarking/index.html.

[35] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In Proceedings of the 2004 International Symposium on Code Generation

and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[36] J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,

part i. Commun. ACM, 3(4):184–195, Apr. 1960.

[37] S. Murata, N. Ishii, Y. Chiba, and N. Doi. Optimizing exception handling in a dynamic

compiler for ruby. IPSJ Transactions on Programming, 4(1):123–133, mar 2011.

[38] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Sohda, and Y. Kimura. Openjit: An

open-ended, reflective jit compiler framework for java. In Proceedings of the 14th European

Conference on Object-Oriented Programming, ECOOP ’00, pages 362–387, London, UK,

UK, 2000. Springer-Verlag.

[39] M. Paleczny, C. Vick, and C. Click. The java hotspotTM server compiler. In JVM’01: Pro-

ceedings of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Sym-

posium, pages 1–1, Berkeley, CA, USA, 2001. USENIX Association.

[40] M. Pall. The luajit project. http://luajit.org/.

[41] E. Phoenix. Rubinius. http://rubini.us/.

[42] E. H. Ryan Davis. ruby2c. https://rubygems.org/gems/ruby2c/.

[43] L. Sansonetti. Macruby. http://macruby.org/.

[44] K. Sasada, Y. Matsumoto, A. Maeda, and M. Namiki. Yarv : Yet another rubyvm : The

implementation and evaluation. IPSJ Transactions on Programming, 47(2):57–73, 2006-02-

15.

[45] S. Shiba, K. Sasada, and K. Hiraki. Cast off : A compiler for ruby implemented as a library.

IPSJ Transactions on Programming, 2012(1):1–22, oct 2012.

[46] K. Shudo. shuJIT - Java Just-in-Time Compiler for x86 Processors. http://www.shudo.

net/jit/index.html.

[47] Syoyo Fujita. Ambient Occlusion Benchmark. http://code.google.com/p/aobench/.

78

[48] M. Tatsubori, A. Tozawa, T. Suzumura, S. Trent, and T. Onodera. Evaluation of a just-in-time

compiler retrofitted for php. In Proceedings of the 6th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, VEE ’10, pages 121–132, New York, NY, USA,

2010. ACM.

[49] D. Ungar and R. B. Smith. Self: The power of simplicity. In Conference Proceedings on

Object-oriented Programming Systems, Languages and Applications, OOPSLA ’87, pages

227–242, New York, NY, USA, 1987. ACM.

[50] C. Wimmer and T. Würthinger. Truffle: A self-optimizing runtime system. In Proceedings

of the 3rd Annual Conference on Systems, Programming, and Applications: Software for

Humanity, SPLASH ’12, pages 13–14, New York, NY, USA, 2012. ACM.

[51] xue.yong.zhi. xruby. https://code.google.com/p/xruby/.

[52] Yukihiro Matsumoto. Ruby Programming Language. https://www.ruby-lang.org/.

79

