A Weak Convergence Theorem for Functionals of Sums of Strong Mixing Sequences

By

Ken-ichi Yoshihara

1. Introduction. Let \(\{\xi_j\} \) be a strictly stationary sequence of random variables which are defined on a probability space \((\Omega, \mathcal{F}, P) \). For \(a \leq b \), let \(M_n^a \) denote the \(\sigma \)-algebra of events generated by \(\xi_a, \cdots, \xi_b \). We shall say that the sequence \(\{\xi_j\} \) is strong mixing (s.m.) if

\[
\alpha(n) = \sup_{A \in M_n^a, B \in M_n^b} |P(A \cap B) - P(A)P(B)| \to 0 \quad (n \to \infty).
\]

Let \(D[0, 1] \) be the space of functions on \([0, 1] \) that are right-continuous and have left-hand limits. We give the Skorokhod \(J_1 \)-topology in \(D[0, 1] \).

Let \(\{\xi_j\} \) be a sequence of i.i.d. random variables. Skorokhod and Slobodeneuk [3] proved that

\[
\int [\xi(t)dw(t)] \quad (n \to \infty)
\]

when \(\{\xi_j\} \) is a sequence of i.i.d. random variables.

In [5] and [6], the author proved weak convergence theorems of the same type concerning martingale differences and series of independent random variables.

In this paper, we shall prove a similar weak convergence theorem when \(\{\xi_j\} \) is some strictly stationary s.m. sequence.

2. Conditions and the main result. In this and the following sections, we shall denote by the letter \(K \), with or without subscripts, various absolute positive constants.

Let \(F_M \) be the space of functions defined on \([0, 1] \times \mathbb{R}^d \) satisfying the following condition: there exists an absolute constant \(M \) such that for \(f \in F_M \), \(f \) and its derivatives satisfy inequalities of the form

\[
|Df(s, x)| \leq M(1 + |x|^\alpha)
\]

where \(D \) denotes either the identity operator or a first derivative and \(\alpha \) is some positive constant.

Remark 2.1. If \(f \in F_M \) and \(f(s, x) = 0(|x| > C) \) for each \(s \in [0, 1] \) and for
some \(C > 0 \), then it is obvious that
\[
|f(s, x) - f(s', x')| \leq M(1 + C^n)\{|s - s'| + |x - x'|\}.
\]

Put
\[
\sigma^2 = \text{Var}(\xi_n) + 2 \sum_{j=1}^{\infty} \text{cov}(\xi_n, \xi_j)
\]
if the series is convergent.

We shall consider the following condition:

CONDITION A. \(\{\xi_n\} \) is a strictly stationary s.m. sequence of random variables such that for some \(\delta > 0 \)

\[(A1)\] \(E\xi_n = 0 \), \(E|\xi_n|^{4+\delta} < \infty \) and
\[(A2)\] \(\sum n\{a(n)\}^{\delta/(4+\delta)} < \infty. \)

REMARK 2.2. It is known that if Condition A is satisfied then the series in (2.3) converges absolutely and
\[
(2.4) \quad (n^{1/2})^{-1/S_{(n)}} \xrightarrow{\text{D}} W \quad (\text{in } D[0, 1])
\]
when \(\sigma > 0 \). (cf. Oodaira and Yoshihara [2]).

In what follows, we shall assume that \(\sigma^2 = 1 \).

THEOREM. Let \(\{\xi_n\} \) be a sequence satisfying Condition A. Let \(f_n \in F_M \) \((n=1, 2, \ldots)\) and \(f \in F_M \). Assume that the for each \(s \in [0, 1] \)

\[(2.5)\] \(Df_n(s, x) \rightarrow Df(s, x) \quad (n \to \infty) \)

uniformly in \(x \) on every finite interval. Then
\[
(2.6) \quad \sum_{i=1}^{n-1} f_n\left(\frac{i}{n}, \frac{S_i}{\sqrt{n}} \right) \xrightarrow{\text{D}} \int_{0}^{1} f(t, w(t))dw(t).
\]

Here, the stochastic interval in (2.6) is taken in the \(L^2 \) sense, and \(q = q(n) \) is a function of \(n \) such that \(\beta_n = n\{a(q)\}^{(2+\delta)/(4+\delta)} \to 0 \) as \(n \to \infty \).

3. Proof of Theorem. Firstly, we shall prove some lemmas. Let \([s] \) be the largest integer \(m \) such that \(m \leq s \).

LEMMA 3.1. Let \(f_n \in F_M(n=1, 2, \ldots) \). Let \(u_n(n=1, 2, \ldots) \) be functions such that
\[
(3.1) \quad u_n(t, x) = f_n^{(i)}(t, x) \quad (n=1, 2, \ldots)
\]
where \(C > 0 \) is some constant. Let \(\{t_0, t_1, \ldots, t_b\} \) be any collection of nonnegative numbers such that \(0 = t_0 < t_1 < \cdots < t_b = 1 \). Assume that \(\{\xi_n\} \) satisfies Condition A. Put
\[
(3.2) \quad P_{\xi}(\varepsilon, \gamma, n) = P\left(\sum_{i=1}^{q} u_n\left(\frac{i}{n}, T_i\right) \frac{\xi_{i+q}}{\sqrt{n}} \right)
\]
A Weak Convergence Theorem

\[- \sum_{j=1}^{b} u_n(t_j, T_{[nt_j]+q})(T_{[nt_j]+1}-T_{[nt_j]-}) > \varepsilon \]

where \(T_i = n^{-\alpha/2} S_i \). Then

\[\lim_{\gamma+i \to 0} \lim_{n \to \infty} P_i(\varepsilon, \gamma, n) = 0 \]

where \(\gamma = \max (t_{i+1}-t_i) \).

Proof. Define

\[\xi_i = \begin{cases} \xi_i & \text{if } |\xi_i| \leq N, \\ 0 & \text{if } |\xi_i| > N, \end{cases} \]

and put \(\eta_i = n^{-\alpha/2} (\xi_i - E\xi_i) \) and \(\zeta_i = (n^{-1/2} \xi_i)^{-} \eta_i \quad (i=1, \ldots, n). \)

For brevity, we write \(\sum_{i,j} \) instead of \(\sum_{i=\lfloor nt_j \rfloor+1}^{\lfloor nt_{j+1} \rfloor} \). Then

\[P_i(\varepsilon, \gamma, n) \leq P \left(\sum_{i,j} u_n \left(\frac{i}{n}, T_i \right) \eta_{i+j} - \sum_{i=\lfloor nt_j \rfloor+1}^{\lfloor nt_{j+1} \rfloor} u_n(t_j, T_{[nt_j]+}) \right) \leq \frac{\varepsilon}{2} \]

(3.3)

\[+ P \left(\sum_{i,j} u_n \left(\frac{i}{n}, T_i \right) \zeta_{i+j} - \sum_{i=\lfloor nt_j \rfloor+1}^{\lfloor nt_{j+1} \rfloor} u_n(t_j, T_{[nt_j]+}) \right) \leq \frac{\varepsilon}{2} \]

(3.4)

\[= P_{i1}(\varepsilon, \gamma, n) + P_{i2}(\varepsilon, \gamma, n), \quad \text{(say)}. \]

For any \(j(1 \leq j \leq b) \) and \(i (\lfloor nt_j \rfloor \leq i < \lfloor nt_{j+1} \rfloor) \), put

\[V_{ij} = u_n \left(\frac{i}{n}, T_i \right) - u_n(t_j, T_{[nt_j]+}). \]

Then, \(V_{ij} \) is uniformly bounded since \(u_n \) is uniformly bounded and by (2.2)

(3.5)

\[EV_{ij} \leq KE \left(\left| \frac{i}{n} - t_j \right| + |T_i - T_{[nt_j]+}| \right)^2 \]

(3.6)

\[\leq K \left(\left| \frac{\lfloor nt_j+1 \rfloor}{n} - t_j \right|^2 + E|T_{[nt_j]+}|^2 \right) \]

\[\leq K \left(t_{j+1} - t_j + \frac{1}{n} \right). \]

Now, from Lemma 2.1 in Davydov [1]

(3.7)

\[|E(V_{ij} \xi_{i+j})(V_{ij} \xi_{i+j})| \leq Kn^{-i}(E|\xi_i|^{i+j+\delta_1/(i+j)} \alpha \min (i' - i, q))^{(i+j+\delta_2)/(i+j)}(i'>i), \]

and

(3.8)

\[E(V_{ij} \xi_{i+j})(V_{ij} \xi_{i+j}) \leq Kn^{-i}(E|\xi_i|^{i+j+\delta_1/(i+j)} \alpha \min (i' - i, q))^{(i+j+\delta_2)/(i+j)}(i'>i). \]

So, for all \(n \) sufficiently large
(3.9) \[E \{ \sum_{\ell} V_{\ell j} \eta_{j+q} \}^2 \]
\[\leq \sum_{\ell} E V_{\ell j}^2 \eta_{j+q}^2 + Kn^{-1} \{ E \{ \xi_1 \}^{4+\delta} \}^{\frac{1}{2+\delta}} \{ \sum_{\ell_j \geq 2} \} \{ (\alpha(q))^{2+\delta} \} \]
\[\leq N^2 n^{-1} \sum_{\ell_j} E V_{\ell j} + K \beta_n \]
and

(3.10) \[E \{ \sum_{\ell} V_{\ell j} \xi_{j+q} \}^2 \leq \sum_{\ell} E V_{\ell j}^2 \xi_{j+q}^2 + K \beta_n \]
\[\leq K \{ \sum_{n \geq 2} E \xi_{n+q}^2 + \beta_n \} \leq K \{ nE \xi_{n+1}^2 \} (t_{j+1} - t_j) + \beta_n \}

Hence, from (3.9) and (3.10) it follows that

(3.11) \[E \{ \sum_{l=1}^{n-q} u_n \left(\frac{i}{n}, T_1 \right) \eta_{j+q} - \sum_{j=1}^{n-q} u_n(t_j, T_{\lfloor nt_j \rfloor}, \lfloor nt_j \rfloor - q) \sum_{\ell \geq 2} \eta_{\ell j+q} \}^2 \]
\[\leq \sum_{j=1}^{n-q} E \{ \sum_{\ell \geq 2} V_{\ell j} \eta_{\ell j+q} \}^2 + 2 \sum_{j \geq j_2 \geq 2} \sum_{\ell \geq 2} E \{ \sum_{\ell \geq 2} V_{\ell j} \eta_{\ell j+q} \sum_{\ell \geq 2} V_{\ell j} \eta_{\ell j+q} \}
\]
\[\leq K \{ \gamma + b^2 \beta_n \}
\]
and

(3.12) \[E \{ \sum_{l=1}^{n-q} u_n \left(\frac{i}{n}, T_1 \right) \xi_{j+q} - \sum_{j=1}^{n-q} u_n(t_j, T_{\lfloor nt_j \rfloor}, \lfloor nt_j \rfloor - q) \sum_{\ell \geq 2} \xi_{\ell j+q} \}^2 \]
\[\leq K \{ nE \xi_{n+1}^2 + b^2 \beta_n \}
\]

and so we have

(3.13) \[\lim_{r \to 0} \lim_{n \to \infty} P_{\nu}^0(\xi, \gamma, n) = 0 \]
and

(3.14) \[\lim_{r \to 0} \lim_{n \to \infty} P_{\nu}^0(\xi, \gamma, n) \leq K \varepsilon^{-2} E |\xi - \xi_0|^2 \]

Since \(E \xi_0^2 < \infty \), letting \(N \to \infty \) (3.5) follows from (3.13) and (3.14) and the proof is completed.

LEMMA 3.2. Let \(f \in F_M \). Let \(u \) be the function defined by

(3.15) \[u(s, x) = f^{(c)}(s, x) = \begin{cases} f(s, x), & \text{if } (s, x) \in [0, 1] \times [-C, C], \\ 0, & \text{otherwise}, \end{cases} \]

where \(C \) is a positive constant. Assume that the conditions of Lemma 3.1 are satisfied. For any \(\varepsilon > 0 \), let

(3.16) \[P_{\varepsilon}(\xi, \gamma, n) = P \left(\sum_{j=1}^{n-q} u_n(t_j, T_{\lfloor nt_j \rfloor}, T_{\lfloor nt_j + q \rfloor} - T_{\lfloor nt_j \rfloor}) \right. \\
\left. - \sum_{j=1}^{n-q} u(t_j, T_{\lfloor nt_j \rfloor}, T_{\lfloor nt_j + q \rfloor} - T_{\lfloor nt_j \rfloor}) \right) > \varepsilon \]

Then

(3.17) \[\lim_{r \to 0} \lim_{n \to \infty} P_{\varepsilon}(\xi, \gamma, n) = 0. \]
PROOF. Let j be any integer such that $1 \leq j \leq b$. Let

$$v_j(x) = u_n(t_j, x) - u(t_j, x)$$

and $V_j = v_j(T_{nt+j})$. Further, let

$$X_j = \begin{cases}
T_{nt+j} - T_{nt+j+q}, & \text{if } |T_{nt+j} - T_{nt+j+q}| < N, \\
0, & \text{otherwise,}
\end{cases}$$

$$Y_j = X_j - EX_j$$

and

$$Z_j = T_{nt+j} - T_{nt+j+q} - Y_j.$$

Then

$$P_\delta(\epsilon, \gamma, n) \leq P\left(\left| \sum_{j=1}^{b} V_j Y_j \right| > \frac{\epsilon}{2} \right) + P\left(\left| \sum_{j=1}^{b} V_j Z_j \right| > \frac{\epsilon}{2} \right)$$

$$\leq P\left(N \sum_{j=1}^{b} |V_j| > \frac{\epsilon}{2} \right) + P\left(\max_{1 \leq j \leq b} |Z_j| \sum_{j=1}^{b} |V_j| > \frac{\epsilon}{2} \right)$$

$$\leq 2P\left(N \sum_{j=1}^{b} |V_j| > \frac{\epsilon}{2} \right) + P\left(\max_{1 \leq j \leq b} |Z_j| > N \right).$$

Since by (2.5) $v_j(x) \to 0$ ($n \to \infty$) uniformly in $x \in [-C, C]$ for each $j(1 \leq j \leq b)$, so

$$EV_j = \int_{-C}^{C} \{v_j(x)\} dF_j(x) \to 0 \quad (n \to \infty)$$

where F_j is the df of T_{nt+j}. Hence

$$P\left(N \sum_{j=1}^{b} |V_j| > \frac{\epsilon}{2} \right) \leq 4N^2 \epsilon^{-b} \max_{1 \leq j \leq b} EV_j \to 0 \quad (n \to \infty).$$

On the other hand, noting that $E|Z_j| = n(1+o(1))$, we have

$$P\left(\max_{1 \leq j \leq b} |Z_j| > N \right) \leq \sum_{1 \leq j \leq b} P(|Z_j| > N)$$

$$\leq \sum_{1 \leq j \leq b} N^{-b}EZ_j \leq \sum_{1 \leq j \leq b} N^{-b}E|T_{nt+j} - T_{nt+j+q}|$$

$$\leq N^{-b}K \sum_{j=1}^{b} (t_j - t_{j-1}) \leq KN^{-\epsilon}.$$

From (3.19)-(3.21) it follows that for all N

$$\lim_{n \to \infty} P_\delta(\epsilon, \gamma, n) \leq KN^{-\epsilon}.$$

Thus, we have the lemma.

Lemma 3.3. Under the conditions of Lemma 3.2

$$\sum_{j=1}^{b} u(t_j, T_{nt+j})(T_{nt+j} - T_{nt+j+q}) \xrightarrow{D} \sum_{j=1}^{b} u(t_j, w(t_j))(w(t_{j+1}) - u(t_j)) \quad (n \to \infty).$$

PROOF. (3.23) follows from Remark 2.2, since \(u \) is continuous.

The following lemma was proved in Yoshihara [5].

Lemma 3.4. Let \(u \) be the same function as the one in Lemma 3.2. For any \(\varepsilon > 0 \), let

\[
P_\varepsilon(r) = P\left(\left| \sum_{j=1}^{n} u(t_j, w(t_j)) - \int_0^t u(t, w(t)) \, dw(t) \right| > \varepsilon \right).
\]

Then

\[
\lim_{r \to 0} P_\varepsilon(r) = 0.
\]

Proof of Theorem. For any \(C > 0 \), let \(f^{(C)} \) and \(f_n^{(C)}(n=1, 2, \ldots) \) be functions defined in the preceding lemmas. Then for any \(\varepsilon > 0 \)

\[
P\left(\left| \sum_{i=1}^{n} f_n\left(\frac{i}{n}, T_i \right) \frac{\xi_{i+1}}{\sqrt{n}} - \int_0^1 f(t, w(t)) \, dw(t) \right| > \varepsilon \right)
\]

\[
\leq P\left(\left| \sum_{i=1}^{n} f^{(C)}\left(\frac{i}{n}, T_i \right) \frac{\xi_{i+1}}{\sqrt{n}} - \int_0^1 f^{(C)}(t, w(t)) \, dw(t) \right| > \varepsilon \right)
\]

\[+ P\left(\max_{1 \leq i \leq n} |T_i| > C \right) + P\left(\sup_{0 \leq t \leq 1} |w(t)| > C \right).
\]

Let \(\{C_n\} \) be an increasing sequence of positive numbers such that \(C_n \to \infty \). Since \(S_n, \ldots, S_n \) are partial sums of mixing sequences, so by Theorem 3 in Yoshihara [4] we have

\[
\lim_{C_n \to \infty} P\left(\max_{1 \leq i \leq n} |T_i| > C_n \right) \leq \lim_{C_n \to \infty} C_n E\left(\max_{1 \leq i \leq n} |T_i| \right) = 0.
\]

On the other hand, it is clear that

\[
\lim_{C_n \to \infty} P\left(\sup_{0 \leq t \leq 1} |w(t)| > C_n \right) = 0
\]

holds. Hence, (2.6) is obtained from Lemmas 3.1-3.4 and (3.26)-(3.28).

4. Concluding remark. It is desirable to prove that

\[
\sum_{i=1}^{n-1} f_n\left(\frac{i}{n}, S_i \right) \frac{\xi_{i+1}}{\sqrt{n}} \xrightarrow{\mathcal{D}} \int_0^1 f(t, w(t)) \, dw(t)
\]

instead of (2.6). Obviously, under conditions of Theorem (4.1) holds for \(f_n(t, x) \) of special type, such as \(f_n(t, x) = g_n(t) + ax + b \). But, it seems to be difficult to prove (4.1) for \(f_n(t, x) \) of general type.

References

