Department of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University
Graduate School of Environment and Information Sciences, Yokohama National University
Department of Safety Management, Faculty of Environmental and Information Sciences, Yokohama National University
抄録
This paper reports a novel fire-extinguishing agent: an aqueous dispersion of fine ferrocene particles. In this study, the ferrocene–water–surfactant dispersions were prepared to optimize the gas-phase concentration of ferrocene, and their ability to extinguish heptane fires was examined. The fire-extinguishing efficiency was characterized by three parameters: the ferrocene concentration in the dispersion (0–175 ppm), the surfactant used, and the ferrocene particle size (d50=10.4, 11.4, 21.5, and 68.8 μm). The results indicated that (1) the ferrocene (d50=10.4 mm)–water–surfynol 465 dispersion is the most stable among the dispersions tested, (2) the ferrocene–water–surfynol 465 dispersions have an optimal value of ferrocene concentration regarding the extinguishing time, and (3) in the ferrocene particle size range of 10.4–21.5 μm, the minimum extinguishing time of the ferrocene–water–surfynol 465 dispersions is remarkably shorter (1.2 s) than those observed when using a conventional wet chemical agent (45 wt% aqueous solution of potassium carbonate, 12.9 s).